
Machine Learning in R

Jakub Glinka

Jakub Glinka

Warsaw University

Department of Applied Statistics

kubaglinka@mimuw.edu.pl

4 października 2009

Jakub Glinka

1.1 Types of machine learning algorithms

•Supervised Learning (Support Vector Machines)

•Unsupervised Learning (Neural Networks)

•Semi-supervised Learning (co-training)

•Reinforcement Learning (Policy Estimation)

•Transduction (TSVM)

Jakub Glinka

1.2 Machine Learning Tasks

• make a diagnosis based on some clinical measurements;

• assign the ASCII code to digitalized images of handwritten characters;

• predict whether a client will pay back a loan to a bank;

• assess the price of house based on certain characteristics;

• estimates the costs of claims of insurees based on insurance data.

Jakub Glinka

1.3 Machine Learning general settings

In the machine learning approach we assume that we have collected a
sequence

of input/output pairs, from known sets X, Y respectively, that are used to
„learn” a decision function :

that is a good approximation of the possible response y to an arbitrary x.

Jakub Glinka

1.3 Machine Learning general settings

Obviously, in order to find such function, it is necessary that the
already collected data D have something in common with the new and
unseen data. In the framework of machine learning theory, this is
guaranted by assuming that both past and future pairs (x,y) are
independently generated by the same, but of course unknown,
probability P on XxY. Note that this is fundamental difference from
parametric models, in which the relationship between the inputs x and
the outputs y is assumed to follow some unknown function f from
known, finite-dimensional set of functions.

Jakub Glinka

2.1 SVM. Problem formulation

Def. Let P be probability measure on XxY. For measurable function f we
define L-risk as

where function L is non-negative and measurable. In case of empirical
measure we get empirical L-risk:

Jakub Glinka

2.1 SVM. Problem formulation

As primal optimization problem SVM introduces minimalisation of
empirical counterpart of regularized L-risk functional:

where H is certain possibly infinite-dimensional Hilbert space of functions.
One can show that without loss of generality

and so, lambda is a trade-off between complexity and quality of solution.

Jakub Glinka

2.1 SVM. Problem formulation

This is the moment where kernel trick comes to a play. We call function

a kernel if there exists hilbert space H and mapping

that function k is inner product in that space, namely

Jakub Glinka

2.1 SVM. Problem formulation

One can show that for every kernel there is a canonical mapping on
certain hilbert space H given by

such that, k has reproducing property, namely

and set of functions given below is dense in H and, most importantly, this
is the set used by SVM for regularized empirical risk minimisation.

Jakub Glinka

2.1 SVM. Problem formulation

Directly from the reproducing property of kernel it follows that

where K is semi-definite matrix, and so, if we consider convex loss function

L, in order to find the decision function we have to solve finite dimensional

convex program :

Jakub Glinka

2.1 SVM. Problem formulation

Examples of popular kernels:

linear kernel

polynomial kernel

gaussian kernel

Jakub Glinka

2.1 SVM. Problem formulation

As for the loss function L, there are two commonly used in practice. For
classification tasks we have hinge loss (or soft margin loss):

which penalizes lineary for misclassification, and epsilon insensitive loss
used mainly for regression problems:

Jakub Glinka

2.2 SVM. C-classification.

If we consider simple binary classification task using soft margin loss we

are faced with primal problem called C-SVC:

Points with ξ_i>0 are called support vectors (SV). One can show that

point corresponding coeficient alpha is >0 iff this point is SV (sparsity of

the solution). Usually one adds threshold b to find slightly different

function

where

Jakub Glinka

2.3 SVM. nu-classification.

Because in some cases finding value of parameter C in C-SVC can be

difficult there is nice modification of that previous algorithm called nu-SVC :

Lets assume that alghorithm nu-SVC gave rho>0, and denote

as fraction of marginal errors. One can show that parameter nu is lower

bound on that fraction (and upper bound on fraction of SV). It can be also

shown that C-SVC with C equal to 1/rho produces the same solution.

Jakub Glinka

2.4 SVM. epsilon-regression.

If we consider regression task using epsilon-insensitive loss we are faced

with primal problem called epsilon-SVR:

with respect to

Note that thanks to this loss function we can achieve simillary to SVC

alghorithms sparsity of the solution. Hovewer unlike then we have two

parameters to adjust instead of one – C and epsilon. Epsilon can be

considered as a priori set level of accuracy of solution but in most cases

we want the solution to be as accurate as possible. To resolve this

problem one makes epsilon part of optimisation problem.

Jakub Glinka

2.5 SVM. nu-regression.

This modification is called nu-SVR, with primal problem shown below:

with respect to

Lets assume that alghorithm nu-SVR ended with epsilon>0. One can

show that nu is upper bound on fraction of errors, where as an error we

denote points with distance of outputs more than epsilon from the decison

function (in other words outside epsilon-tube of decision function). It is

also lower bound on fraction of SVs.

Jakub Glinka

3.1 SVM In R. Package e1071 overview

The first implementation of SVM in R was introduced in the e1071

package. The svm() function provides a rigid interface to libsvm along

with visualization and parameter tuning methods. Libsvm is fast and

easy to use implementation of the most popular SVM formulations: C-

SVC, nu-SVC, epsilon and nu SVR. It includes the most common

kernels (linear, polynomial, gaussian and sigmoid), only extensible by

changing the C++ source code. For multi-class classification one-

against-one voting scheme is used. Package basically provides a

training function with standard and formula interfaces and a predict()

method. Hyperparameter tuning is done using the tune() framework

performing a grid search over specified parameter ranges. By default

the error measure is computed using 10-fold cross validation on the

given data.

Jakub Glinka

3.2 SVM In R. C-SVC with abalone dataset N=300

C-SVC should be used in case of multiclassification problems. Below is

sample code in R for prediction of class of age of abalone. We tune

hyperparameters of gaussian kernel:

>tune.svm(age~.,data=train.data2,type="C-classification",kernel="radial",cost=seq(.5,2.5,.5),cachesize=100,cross=10,gamma=1/8)

Parameter tuning of `svm':

- sampling method: 10-fold cross validation

- best parameters:

gamma cost

0.125 0.5

- best performance: 0.28

We use best parameters to find a decision function and accuracy of

classifier

>model_radial<-svm(age~.,data=train.data2,type="C-classification",kernel="radial",cost=2,cross=10,gamma=1/8)

>mean(predict(model_radial,train.data2)==train.data2[,9])

[1] 0.7266667

Jakub Glinka

3.3 SVM In R. nu-SVC with Wisconsin dataset N=699

In most cases besides training accuracy we also asses accuracy on test set.

Below is sample code of predicting malignant cancer type.

> model<-svm(type~.,data=train.data,type="nu-classification",kernel="radial",nu=.077,gamma=0.015)

> summary(model)

Call:

svm(formula = type ~ ., data = train.data, type = "nu-classification", kernel = "radial", nu = 0.077, gamma = 0.015)

Parameters:

SVM-Type: nu-classification

SVM-Kernel: radial

gamma: 0.015

nu: 0.077

Number of Support Vectors: 52

(20 32)

Number of Classes: 2

Levels:

2 4

> mean(predict(model,train.data)==train.data$type)

[1] 0.9752577

> mean(predict(model,test.data)==test.data$type)

[1] 0.9626168

Jakub Glinka

3.4 SVM In R. nu-SVR toy example N=20

On the pictures below we see how width of the epsilon-tube changes with

data noise. (nu=.6)

Jakub Glinka

3.5 SVM In R. nu-SVR with Auto-mpg dataset N=398

Below is R code for predicting fuel consumption on Auto-mpg dataset.

> model<-svm(V1~.,data=train.data,type="nu-regression",kernel="radial",nu=.6,gamma=1/8,cost=1)

> summary(model)

Call:

svm(formula = V1 ~ ., data = train.data, type = "nu-regression", kernel = "radial", nu = 0.6, gamma = 1/8, cost = 1)

Parameters:

SVM-Type: nu-regression

SVM-Kernel: radial

cost: 1

gamma: 0.125

nu: 0.6

Number of Support Vectors: 213

> mean(abs(predict(model,train.data)-train.data$V1)/train.data$V1)

[1] 0.04426202

> mean(abs(predict(model,train.data)-train.data$V1))

[1] 1.089199

> mean(abs(predict(model,test.data)-test.data$V1)/test.data$V1)

[1] 0.09294827

> mean(abs(predict(model,test.data)-test.data$V1))

[1] 2.231173

Jakub Glinka

3.6 SVM In R. Other packages.

ksvm()

(kernlab)

svmlight()

(klaR)

svmpath()

(svmpath)

Formulations C-SVC, nu-SVC,

C-BSVC, spoc-SVC,

one-SVC, eps-SVR,

nu-SVR, eps-BSVR

C-SVC, eps-SVR binary C-SVC

Kernels Gaussian, polynomial,

linear, sigmoid,

Laplace, Bessel,

Anova, Spline

Gaussian, polynomial,

linear, sigmoid

Gaussian, polynomial,

linear

Model

Selection

Hyperparameter

estimation for

Gaussian kernels

NA regularization path for

cost parameter

Extensibility custom kernel

functions

NA custom kernel

functions

Jakub Glinka

References

