## The problems encountered during microarray data analysis

## Joanna Zyprych

Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, e-mail: zjoanna@au.poznan.pl

The data are from the microarray experiment. This project was about Acute myeloid leukemia - investigation of transcriptom of cell from the blood and bone marrow. 86 hybridizations were made. On one microarray there was combined experimental probe - RNA sample from a patient or a healthy person, always labelled with Cy5 and control probe - RNA isolated from cell line HL60 (a subtype of AML) labelled with Cy3. Hybridization was made as follows: 1-2 HL60 versus Control

1-2 HL00 Versus Control

3-68 HL60 versus Leukemia

69-86 HL60 versus Control

From each hybridization using image analysis software genepix we get gpr file. The data from this file are:

| Block | Column | Row | Name          | ID    | Х    | Y    | Dia. | F647 Median | F647 Mean | F647 SD | F647 CV | Flags |
|-------|--------|-----|---------------|-------|------|------|------|-------------|-----------|---------|---------|-------|
| 1     | 1      | 1   | ERG_Operon    | 2078  | 1220 | 1450 | 270  | 2115        | 2292      | 1194    | 52      | 100   |
| 1     | 2      | 1   | ERG_Operon    | 2078  | 1670 | 1450 | 270  | 2241        | 2383      | 1123    | 47      | 100   |
| 1     | 3      | 1   | ERG_Operon    | 2078  | 2120 | 1450 | 260  | 2164        | 2273      | 945     | 41      | 100   |
| 1     | 4      | 1   | FLT3_Operon   | 2322  | 2570 | 1450 | 200  | 201         | 259       | 227     | 87      | -50   |
| 1     | 5      | 1   | FLT3_Operon   | 2322  | 3020 | 1450 | 200  | 167         | 213       | 149     | 69      | -50   |
| 1     | 6      | 1   | FLT3_Operon   | 2322  | 3480 | 1450 | 200  | 184         | 306       | 384     | 125     | -50   |
| 1     | 7      | 1   | GAPDHS_Operon | 26330 | 3930 | 1450 | 200  | 237         | 339       | 379     | 111     | -50   |
| 1     | 8      | 1   | GAPDHS_Operon | 26330 | 4380 | 1460 | 200  | 232         | 358       | 417     | 116     | -50   |
| 1     | 9      | 1   | GAPDHS_Operon | 26330 | 4840 | 1460 | 200  | 261         | 470       | 535     | 113     | -50   |

Figure 1. Gpr file from GenePix for AML experiment.

The last column gives us the specified knowledge which weight should be given to spots. For flags value less than the cutoff value we give weights equal 0 and 1 otherwise. We choose cutoff=-50 to downweight bad or absent spots. As we can see from this data first we should calculate the mean intensity for each gene (here we have 3 replication of each spot). Taking into consideration that the spot has a weight of zero or one we want to determine the average of our repetitions in such way that these spots which have weight zero are not taken into account in our calculations.

We build following code:

```
> # MA.A are the data after preprocessing (dim(MA.A)=3069x137)
> Mean_intesity <- avedups(MA.A, ndups=3, spacing=1, weights=MA.A$weights)</pre>
```

To check if the function works right, we can draw two MA plots: before and after using avedups function.

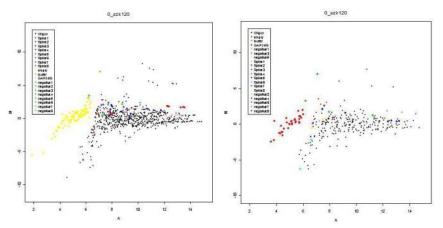



Figure 2. MA plots for one slide before and after using avedups function.

After image analysis and normalization we would like to answer some questions. One of them is: which genes are over(under)expressed comparing leukemia and control probe? Using R software we found the genes which are statistically significant. The statistics used for these calculation are: two sample t-statistics, sam-statistics and fc-statistics. All these calculations were performed using Deds package. Venn diagram shows which genes are common to the three different methods of analysis.

```
> library(DEDS)
```

> # from targets file O-control, 1-leukemia

```
> L<-rep(c(0,1,0),c(2,66,18))
```

```
> data<-as.matrix(Mean_intesity)</pre>
```

```
> d <- deds.stat.linkC(data, L, B=200)</pre>
```

- > # for the comparisons between the 3 statistics
- > t\_genes<-topgenes(d, number = 50,Mean\_intesity\$genes\$Name,sort.by="t" )</pre>
- > fc\_genes<-topgenes(d, number = 50,Mean\_intesity\$genes\$Name,sort.by="fc" )</pre>
- > sam\_genes<-topgenes(d, number = 50,Mean\_intesity\$genes\$Name,sort.by="sam" )</pre>

 $\mathbf{2}$ 

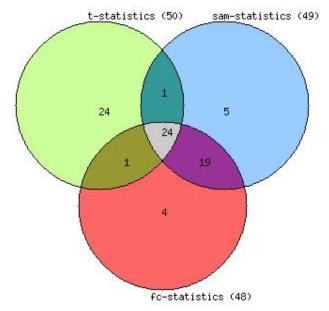



Figure 3. Venn diagram for comaparison of 3 different statistics from DEDS package.

Short description for this function:

deds.stat.linkC(X,L,B=1000,tests=c("t", "fc", "sam","..."))

X: A matrix, in the case of gene expression data, rows correspond to N genes and columns to p mRNA samples.

L: A vector of integers corresponding to observation (column) class labels.

B: The number of permutations.

Another example of the microarray analysis. From each hybridization using image analysis software genepix we get gpr file. The data from this file are:

| Block | Column | Row | Name                           | (D                                |
|-------|--------|-----|--------------------------------|-----------------------------------|
| 1     | 1      | 1   | Dye Marker                     | 97: D-01 Dye Marker               |
| 1     | 2      | 1   | H200000001-NM_001885           | 01-D01-H200000498-ENSG00000109846 |
| 1     | 3      | 1   | Buffer                         | 96: D-01 Buffer                   |
| 1     | 4      | 1   | H200000511-NM_030984;NM_001061 | 01-D13-H200000511-ENSG00000059377 |
| 1     | 5      | 1   | H200000542-NM_005658           | 01-H01-H200000542-ENSG00000056558 |
| 1     | 6      | 1   | H20000008-NM_005041            | 01-H13-H200000557-ENSG00000180644 |
| 1     | 7      | 1   | H200000577-NM_000073           | 01-L01-H200000577-ENSG00000160654 |
| 1     | 8      | 1   | H200000583-NM_003385           | 01-L13-H200000583-ENSG00000163032 |
| 1     | 9      | 1   | H200000011-NM_006080           | 01-P01-H200000613-ENSG00000075213 |

Figure 4. GPR file.

The data records contain all names and identifier information for each spot. As we can see from the Name column it has only oligo id, here we can not see which sond consist which gene. We have also available a separate gal file in which oligo id and gene symbol are combined. These data look as follows:

| 384_number | 384_position | oligo_id   | oligo_sequend | gene_id     | transcript_id | gene_symbol  |
|------------|--------------|------------|---------------|-------------|---------------|--------------|
| 1          | A03          | H20000001  | TGGGGAGAA     | ENSG0000015 | ENST000028    | NAT2         |
| 1          | A05          | H20000005  | GAAGGCTCT     | ENSG000009  | ENST000020    | TGM1         |
| 1          | A07          | H20000006  | ATGGGTTACA    | ENSG000006  | ENST000038    | FECH         |
| 1          | A09          | H20000007  | TATGGAGAT     | ENSG0000017 | ENST000038    | GLDC         |
| 1          | A11          | H20000008  | GTCATCTTCT    | ENSG0000014 | ENST000027    | MS4A2        |
| 1          | A13          | H200000010 | CATGGAGGA     | ENSG0000017 | ENST000038    | Q6FG55_HUMAN |
| 1          | A15          | H200000011 | GAACAGGAC     | ENSG000007  | ENST000026    | ACAT1        |
| 1          | A17          | H200000014 | GTGCTGTGGG    | ENSG0000016 | ENST000037    | PTAFR        |

Figure 5. GAL file.

We are working in R with gpr files and that is why as result we obtain only the names of sond. We need for further analysis gene names and this is the reason why we combine these two files gpr and gal file. Grep searches for matches to pattern (its first argument) within the character vector x (second argument).

## $\mathbf{R}$ code

```
> gal<-read.table("gal.csv",dec=",", sep=";")</pre>
> wyniki<-read.table("gpr.csv",dec=",", sep=";")</pre>
> gal<-gal[,3]
> gal<-as.character(gal)
> gpr<-gpr[,4]
> gpr<-as.character(gpr)
> symbol<-gal[,9]</pre>
> symbol<-as.character(symbol)</pre>
> result<-matrix(0,length(gpr),2)</pre>
> result[,1]<-gpr</pre>
> colnames(result)<-c("Sonda","Gen_symbol")</pre>
> # i is the number of elements in a
>
  for(i in 1:8){
          j<-grep(gal[i],gpr)</pre>
+
+
          result[j,2]<-symbol[i]</pre>
+
                      }
```