phull: p-hull in R

Marek Gągolewski^{1,2} gagolews@ibspan.waw.pl

WZUR, Warsaw, October 4, 2009

¹ Systems Research Institute,

Polish Academy of Sciences

² Faculty of Mathematics

and Information Science,

Warsaw University of Technology

M. Gągolewski (PAS, WUT)

phull: p-hull in R

WZUR 2009 1 / 28

M. Gągolewski (PAS, WUT)

< ロト < 同ト < ヨト

Given an arbitrary $0 , <math>x_0, y_0 \in \mathbb{R}$, $a \ge 0$ and $b \ge 0$, let

$$E_{p,a,b}^{(x_0,y_0)} = \left\{ (x,y) \in \mathbb{R}^2 : \left| \frac{y - y_0}{b} \right|^p + \left| \frac{x - x_0}{a} \right|^p \le 1 \right\}.$$
(1)

イロト 不得下 イヨト イヨト 二日

Given an arbitrary $0 , <math>x_0, y_0 \in \mathbb{R}$, $a \ge 0$ and $b \ge 0$, let

$$E_{p,a,b}^{(x_0,y_0)} = \left\{ (x,y) \in \mathbb{R}^2 : \left| \frac{y - y_0}{b} \right|^p + \left| \frac{x - x_0}{a} \right|^p \le 1 \right\}.$$
(1)

Moreover, for $p=\infty$ we have

$$E_{p,a,b}^{(x_0,y_0)} = \left\{ (x,y) \in \mathbb{R}^2 : \max\left\{ \left| \frac{y - y_0}{b} \right|, \left| \frac{x - x_0}{a} \right| \right\} \le 1 \right\}, \quad (2)$$

イロト イ得ト イヨト イヨト 二日

Given an arbitrary $0 , <math>x_0, y_0 \in \mathbb{R}$, $a \ge 0$ and $b \ge 0$, let

$$E_{p,a,b}^{(x_0,y_0)} = \left\{ (x,y) \in \mathbb{R}^2 : \left| \frac{y - y_0}{b} \right|^p + \left| \frac{x - x_0}{a} \right|^p \le 1 \right\}.$$
 (1)

Moreover, for $p=\infty$ we have

$$E_{p,a,b}^{(x_0,y_0)} = \left\{ (x,y) \in \mathbb{R}^2 : \max\left\{ \left| \frac{y - y_0}{b} \right|, \left| \frac{x - x_0}{a} \right| \right\} \le 1 \right\}, \quad (2)$$

and for p = 0

$$E_{p,a,b}^{(x_0,y_0)} = \left\{ (x,y) \in \mathbb{R}^2 : \begin{array}{ccc} x \in [x_0 - a, x_0 + a] & \wedge & y = y_0 \\ \forall & y \in [y_0 - b, y_0 + b] & \wedge & x = x_0 \end{array} \right\}.$$
(3)

< □ > < 同 > < 回 > <

Given an arbitrary $0 , <math>x_0, y_0 \in \mathbb{R}$, $a \ge 0$ and $b \ge 0$, let

$$E_{p,a,b}^{(x_0,y_0)} = \left\{ (x,y) \in \mathbb{R}^2 : \left| \frac{y - y_0}{b} \right|^p + \left| \frac{x - x_0}{a} \right|^p \le 1 \right\}.$$
 (1)

Moreover, for $p=\infty$ we have

$$E_{p,a,b}^{(x_0,y_0)} = \left\{ (x,y) \in \mathbb{R}^2 : \max\left\{ \left| \frac{y - y_0}{b} \right|, \left| \frac{x - x_0}{a} \right| \right\} \le 1 \right\}, \quad (2)$$

and for p = 0

$$E_{p,a,b}^{(x_0,y_0)} = \left\{ (x,y) \in \mathbb{R}^2 : \begin{array}{cc} x \in [x_0 - a, x_0 + a] & \wedge & y = y_0 \\ \vee & y \in [y_0 - b, y_0 + b] & \wedge & x = x_0 \end{array} \right\}.$$
(3)

We call $E_{p,a,b}^{(x_0,y_0)}$ the *p*-ellipse of size (a,b) centered at (x_0,y_0) .

Illustration: $\partial E_{p,a,b}^{(0,0)} \cap \mathbb{R}_0^+ \times \mathbb{R}_0^+$.

イロト イポト イヨト イ

We are given a finite planar set $Q = \{q_1, q_2, \dots, q_n\}$, such that $q_i = (x_i, y_i) \in \mathbb{R}^2$, $i = 1, \dots, n \ (n \ge 4)$.

イロト イポト イヨト イヨ

We are given a finite planar set $Q = \{q_1, q_2, \dots, q_n\}$, such that $q_i = (x_i, y_i) \in \mathbb{R}^2$, $i = 1, \dots, n$ $(n \ge 4)$.

Let

$$\begin{aligned} x_1 &= \min_{p_i \in P} x_i, \\ x_r &= \max_{p_i \in P} x_i, \\ y_b &= \min_{p_i \in P} y_i, \\ y_t &= \max_{p_i \in P} y_i. \end{aligned}$$

Then $B(Q) = [x_l, x_r] \times [y_t, y_b]$ is the minimal bounding rectangle of Q.

For a fixed $p\geq 0$ let

$$\begin{array}{lcl} C_{p}^{\mathrm{bl}}(Q) & = & \bigcup_{a,b: \ Q \not\in \mathrm{int} \ E_{p,a,b}^{(x_{1},y_{\mathrm{b}})} \ E_{p,a,b}^{(x_{1},y_{\mathrm{b}})}, \\ C_{p}^{\mathrm{br}}(Q) & = & \bigcup_{a,b: \ Q \not\in \mathrm{int} \ E_{p,a,b}^{(x_{r},y_{\mathrm{b}})} \ E_{p,a,b}^{(x_{r},y_{\mathrm{b}})}, \\ C_{p}^{\mathrm{tr}}(Q) & = & \bigcup_{a,b: \ Q \not\in \mathrm{int} \ E_{p,a,b}^{(x_{r},y_{\mathrm{t}})} \ E_{p,a,b}^{(x_{r},y_{\mathrm{t}})}, \\ C_{p}^{\mathrm{tl}}(Q) & = & \bigcup_{a,b: \ Q \not\in \mathrm{int} \ E_{p,a,b}^{(x_{1},y_{\mathrm{t}})} \ E_{p,a,b}^{(x_{1},y_{\mathrm{t}})}. \end{array}$$

For a fixed $p \ge 0$ let

$$\begin{array}{lcl} C_{p}^{\mathrm{bl}}(Q) & = & \bigcup_{a,b: \ Q \not\in \operatorname{int} E_{p,a,b}^{(x_{1},y_{\mathrm{b}})} E_{p,a,b}^{(x_{1},y_{\mathrm{b}})}, \\ C_{p}^{\mathrm{br}}(Q) & = & \bigcup_{a,b: \ Q \not\in \operatorname{int} E_{p,a,b}^{(x_{r},y_{\mathrm{b}})} E_{p,a,b}^{(x_{r},y_{\mathrm{b}})}, \\ C_{p}^{\mathrm{tr}}(Q) & = & \bigcup_{a,b: \ Q \not\in \operatorname{int} E_{p,a,b}^{(x_{r},y_{\mathrm{t}})} E_{p,a,b}^{(x_{r},y_{\mathrm{t}})}, \\ C_{p}^{\mathrm{tl}}(Q) & = & \bigcup_{a,b: \ Q \not\in \operatorname{int} E_{p,a,b}^{(x_{1},y_{\mathrm{t}})} E_{p,a,b}^{(x_{1},y_{\mathrm{t}})}. \end{array}$$

We further on assume $\operatorname{int} C_p^{\operatorname{bl}}(Q)$, $\operatorname{int} C_p^{\operatorname{br}}(Q)$, $\operatorname{int} C_p^{\operatorname{tr}}(Q)$, $\operatorname{int} C_p^{\operatorname{tl}}(Q)$ are mutually exclusive.

Definition

Let $Q = \{q_1, q_2, \dots, q_n\} \subset \mathbb{R}^2$ and $p \ge 0$. The *p*-hull of Q, denoted by $H_p(Q)$, is defined by

 $H_p(Q) = \partial \left(B(Q) \setminus C_p^{\rm bl}(Q) \setminus C_p^{\rm br}(Q) \setminus C_p^{\rm tr}(Q) \setminus C_p^{\rm tl}(Q) \right).$ (4)

イロト イポト イヨト イ

Properties of a *p*-hull

Proposition

Let $Q = \{q_1, q_2, \dots, q_n\} \subset \mathbb{R}^2$ and $p \ge 0$. Then we have the following.

(日) (同) (三) (1)

Proposition

Let $Q = \{q_1, q_2, \dots, q_n\} \subset \mathbb{R}^2$ and $p \ge 0$. Then we have the following.

• If
$$p = 1$$
 then $H_p(Q)$ is the convex hull of Q .

イロト イポト イヨト イ

Proposition

Let $Q = \{q_1, q_2, \ldots, q_n\} \subset \mathbb{R}^2$ and $p \ge 0$. Then we have the following.

- If p = 1 then $H_p(Q)$ is the convex hull of Q.
- If $p = \infty$ then $H_p(Q)$ is the X-Y hull of Q (see Nicholl et al, 1983).

Proposition

Let $Q = \{q_1, q_2, \dots, q_n\} \subset \mathbb{R}^2$ and $p \ge 0$. Then we have the following.

- If p = 1 then $H_p(Q)$ is the convex hull of Q.
- If $p = \infty$ then $H_p(Q)$ is the X-Y hull of Q (see Nicholl et al, 1983).
- If p = 0 then $H_p(Q) = \partial B(Q)$.

• $H_p(Q)$ is translation- and scale-invariant for any $p \ge 0$, i.e. $\circledast H_p(Q) = H_p(\circledast Q).$

- $H_p(Q)$ is translation- and scale-invariant for any $p \ge 0$, i.e. $\circledast H_p(Q) = H_p(\circledast Q).$
- $H_p(Q)$ is not rotation-invariant (thus it is orientation-dependent) for $p \neq 1$.

- $H_p(Q)$ is translation- and scale-invariant for any $p \ge 0$, i.e. $\circledast H_p(Q) = H_p(\circledast Q).$
- $H_p(Q)$ is not rotation-invariant (thus it is orientation-dependent) for $p \neq 1$.
- 3 $H_p(Q)$ is convex for $p \leq 1$.

- $H_p(Q)$ is translation- and scale-invariant for any $p \ge 0$, i.e. $\circledast H_p(Q) = H_p(\circledast Q).$
- $H_p(Q)$ is not rotation-invariant (thus it is orientation-dependent) for $p \neq 1$.
- $H_p(Q)$ is convex for $p \leq 1$.
- If $p' \ge p$, then $H_{p'}(Q) \subseteq H_p(Q)$.

Example: p = 0.1

Example: p = 0.5

Example: p = 1.0

M. Gągolewski (PAS, WUT)

phull: p-hull in R

WZUR 2009 12 / 28

Example: p = 2.0

Example: p = 50

M. Gągolewski (PAS, WUT)

WZUR 2009 14 / 28

Computation

Let

- $q_{\mathrm{bl}_1} = \underset{q_i \in Q: \ x_i = x_1}{\mathrm{arg min}} y_i,$
- $q_{\mathrm{br}_1} = \underset{q_i \in Q: \ y_i = y_{\mathrm{b}}}{\operatorname{arg\,max}} x_i,$

$$q_{\mathrm{tr}_1} = \underset{q_i \in Q: \ x_i = x_{\mathrm{r}}}{\operatorname{arg\,max}} y_i,$$

$$q_{\mathrm{tl}_1} = \underset{q_i \in Q: \ y_i = y_{\mathrm{t}}}{\operatorname{arg\,min}} x_i,$$

 $q_{\mathrm{bl}_2} = \underset{q_i \in Q: \ y_i = y_{\mathrm{b}}}{\operatorname{arg\,min}} x_i,$

$$q_{\mathrm{br}_2} = \underset{q_i \in Q: \ x_i = x_{\mathrm{r}}}{\arg\min} y_i,$$

$$q_{\mathrm{tr}_2} = \underset{q_i \in Q: \ y_i = y_{\mathrm{t}}}{\operatorname{arg\,max}} x_i,$$

$$q_{\mathrm{tl}_2} = \underset{q_i \in Q: \ x_i = x_1}{\operatorname{arg\,max}} y_i.$$

・ロト ・同ト ・ヨト

Note that all the points $\in \partial B(Q)$.

Decomposition:

 $H_p(Q) = \partial \left(B(Q) \setminus C_p^{\mathrm{bl}}(Q) \setminus C_p^{\mathrm{br}}(Q) \setminus C_p^{\mathrm{tr}}(Q) \setminus C_p^{\mathrm{tl}}(Q) \right)$

イロト イポト イヨト イヨト

3

Decomposition:

- $H_p(Q) = \partial \left(B(Q) \setminus C_p^{\mathrm{bl}}(Q) \setminus C_p^{\mathrm{br}}(Q) \setminus C_p^{\mathrm{tr}}(Q) \setminus C_p^{\mathrm{tl}}(Q) \right)$
 - $= \left(\frac{\partial C_p^{\mathrm{bl}}(Q) \cup \partial C_p^{\mathrm{br}}(Q) \cup \partial C_p^{\mathrm{tr}}(Q) \cup \partial C_p^{\mathrm{tr}}(Q)}{q_{\mathrm{bl}_2} q_{\mathrm{br}_1} \cup \overline{q_{\mathrm{br}_2} q_{\mathrm{tr}_1}} \cup \overline{q_{\mathrm{tr}_2} q_{\mathrm{tl}_1}} \cup \overline{q_{\mathrm{tl}_2} q_{\mathrm{bl}_1}}. \right)$ (5)

Decomposition:

$$H_p(Q) = \partial \left(B(Q) \setminus C_p^{\mathrm{bl}}(Q) \setminus C_p^{\mathrm{br}}(Q) \setminus C_p^{\mathrm{tr}}(Q) \setminus C_p^{\mathrm{tr}}(Q) \setminus C_p^{\mathrm{tl}}(Q) \right)$$

$$= \left(\frac{\partial C_p^{\mathrm{bl}}(Q) \cup \partial C_p^{\mathrm{br}}(Q) \cup \partial C_p^{\mathrm{tr}}(Q) \cup \partial C_p^{\mathrm{tl}}(Q)}{q_{\mathrm{bl}_2} q_{\mathrm{br}_1} \cup \overline{q_{\mathrm{br}_2}} q_{\mathrm{tr}_1} \cup \overline{q_{\mathrm{tr}_2}} q_{\mathrm{tl}_1}} \cup \overline{q_{\mathrm{tl}_2}} q_{\mathrm{bl}_1}. \right)$$
(5)

Moreover:

$$\begin{aligned}
\partial C_p^{\rm bl}(Q) &= \partial C_p^{\rm bl}(\{q_i \in Q : x_i \le x_{\rm bl_2} \land y_i \le y_{\rm bl_1}\}), \\
\partial C_p^{\rm br}(Q) &= \partial C_p^{\rm br}(\{q_i \in Q : x_i \ge x_{\rm br_1} \land y_i \le y_{\rm br_2}\}), \\
\partial C_p^{\rm tr}(Q) &= \partial C_p^{\rm tr}(\{q_i \in Q : x_i \ge x_{\rm tr_2} \land y_i \ge y_{\rm tr_1}\}), \\
\partial C_p^{\rm tl}(Q) &= \partial C_p^{\rm tl}(\{q_i \in Q : x_i \le x_{\rm tl_1} \land y_i \ge y_{\rm tl_2}\}).
\end{aligned}$$
(6)

< ロト < 同ト < ヨト

1 Naïve algorithm: $O(n^3)$ time. :-(

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

- Naïve algorithm: $O(n^3)$ time. :-(
- Algorithm proposed by Gągolewski, Nowakiewicz, Dębski (2009)
 generalizes Graham's scan (Graham, 1972): O(n log n) time, O(n) memory.

- **1** Naïve algorithm: $O(n^3)$ time. :-(
- Algorithm proposed by Gągolewski, Nowakiewicz, Dębski (2009)
 generalizes Graham's scan (Graham, 1972): O(n log n) time, O(n) memory.
- **3** Output: $P \cap \partial C_p^{\text{bl}}(Q)$ (without loss of generality).

- **1** Naïve algorithm: $O(n^3)$ time. :-(
- Algorithm proposed by Gągolewski, Nowakiewicz, Dębski (2009)
 generalizes Graham's scan (Graham, 1972): O(n log n) time, O(n) memory.
- **3** Output: $P \cap \partial C_p^{\text{bl}}(Q)$ (without loss of generality).
- Input: $p \ge 0$, $W = \{q_i \in Q : x_i \le x_{bl_2} \land y_i \le y_{bl_1}\}$ as an array sorted by x coordinate $w[1], \ldots, w[m]$.

- **1** Naïve algorithm: $O(n^3)$ time. :-(
- Algorithm proposed by Gągolewski, Nowakiewicz, Dębski (2009)
 generalizes Graham's scan (Graham, 1972): O(n log n) time, O(n) memory.
- **3** Output: $P \cap \partial C_p^{\text{bl}}(Q)$ (without loss of generality).
- Input: $p \ge 0$, $W = \{q_i \in Q : x_i \le x_{bl_2} \land y_i \le y_{bl_1}\}$ as an array sorted by x coordinate $w[1], \ldots, w[m]$.
- **5** Denotation: by $E_{p,q_i,q_j}^{(x_0,y_0)}$ we mean an *p*-ellipse centered at (x_0,y_0) interpolating $q_i \neq q_j$.

э

イロト 不得下 イヨト イヨト

Implementation: phull 0.1-2 — package available on CRAN. (http://cran.r-project.org/web/packages/phull/index.html)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Implementation: phull 0.1-2 — package available on CRAN. (http://cran.r-project.org/web/packages/phull/index.html)

Example: axes rotation.

イロト イ得ト イヨト イ

Implementation: phull 0.1-2 — package available on CRAN. (http://cran.r-project.org/web/packages/phull/index.html)

Example: axes rotation.

library(phull); # load the library

```
Implementation: phull 0.1-2 — package available on CRAN.
(http://cran.r-project.org/web/packages/phull/index.html)
```

```
Example: axes rotation.
library(phull); # load the library
translateAndRotate <- function(data, x0, y0, angle)
{ ... }</pre>
```

```
rotateAndTranslate <- function(data, x0, y0, angle)
{ ... }</pre>
```

```
set.seed(98765); n <- 1000; p <- 3.0;
data <- matrix(c(rnorm(n), rt(n, 10)), ncol=2); # input data
nres <- 50; # "resolution"</pre>
```

```
set.seed(98765); n <- 1000; p <- 3.0;
data <- matrix(c(rnorm(n), rt(n, 10)), ncol=2); # input data
nres <- 50; # "resolution"</pre>
```

```
ptest <- phull(data, p=p);
discr_0 <- as.matrix(ptest, nres=nres);</pre>
```

```
# compute the p-hull
# sample
```

```
set.seed(98765); n <- 1000; p <- 3.0;
data <- matrix(c(rnorm(n), rt(n, 10)), ncol=2); # input data
nres <- 50; # "resolution"</pre>
```

```
ptest <- phull(data, p=p);
discr_0 <- as.matrix(ptest, nres=nres);</pre>
```

```
# compute the p-hull
# sample
```

print(ptest)

p-hull, p=3

data: data
1000 points, bounding rectangle: (...)

```
plot(data, type="p", pch=1);
lines(discr_0, col=2);
lines(discr_30, col=4);
```

```
plot(data, type="p", pch=1);
lines(discr_0, col=2);
lines(discr_30, col=4);
```

...and so on...

M. Gągolewski (PAS, WUT)

WZUR 2009 23 / 28

M. Gągolewski (PAS, WUT)

WZUR 2009 24 / 28

Related packages

alphahull (Pateiro-Lopez, Rodriguez-Casal, 2009): α -shapes (Edelsbrunner et al, 1983).

References

- H. Edelsbrunner, D. G. Kirkpatrick, R. Seidel (1983). On the shape of a set of points int the plane. *IEEE Trans. Inf. Theor.* 29(4), 551–559.
- M. Gągolewski, P. Grzegorzewski (2009). A geometric approach to the construction of scientific impact indices. *Scientometrics*. In press. DOI:10.1007/s11192-008-2253-y.
 - M. Gągolewski, M. Nowakiewicz, M. Dębski (2009). *Efficient algorithms for computing "geometric" scientific impact indices*. Submitted for publication.

- R. L. Graham (1972). An efficient algorithm for determining the convex hull of a finite planar set. *Information Processing Letters* 1, 132–133.
- T. M. Nicholl, D. T. Lee, Y. Z. Liao, C. K. Wong (1983). On the X-Y convex hull of a set of X-Y polygons. *BIT* 23, 456–471.
- B. Pateiro-Lopez, A. Rodriguez-Casal (2009). *alphahull: Generalization of the convex hull of a sample of points in the plane*, see alphahull @ CRAN.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you for your attention.