phull: p-hull in R

Marek Gągolewski ${ }^{1,2}$ gagolews@ibspan.waw.pl

WZUR, Warsaw, October 4, 2009

${ }^{1}$ Systems Research Institute,
Polish Academy of Sciences

Outline

(1) p-hull and its properties

(2) Examples

(3) Computation

Preliminaries

Given an arbitrary $0<p<\infty, x_{0}, y_{0} \in \mathbb{R}, a \geq 0$ and $b \geq 0$, let

$$
\begin{equation*}
E_{p, a, b}^{\left(x_{0}, y_{0}\right)}=\left\{(x, y) \in \mathbb{R}^{2}:\left|\frac{y-y_{0}}{b}\right|^{p}+\left|\frac{x-x_{0}}{a}\right|^{p} \leq 1\right\} \tag{1}
\end{equation*}
$$

Preliminaries

Given an arbitrary $0<p<\infty, x_{0}, y_{0} \in \mathbb{R}, a \geq 0$ and $b \geq 0$, let

$$
\begin{equation*}
E_{p, a, b}^{\left(x_{0}, y_{0}\right)}=\left\{(x, y) \in \mathbb{R}^{2}:\left|\frac{y-y_{0}}{b}\right|^{p}+\left|\frac{x-x_{0}}{a}\right|^{p} \leq 1\right\} \tag{1}
\end{equation*}
$$

Moreover, for $p=\infty$ we have

$$
\begin{equation*}
E_{p, a, b}^{\left(x_{0}, y_{0}\right)}=\left\{(x, y) \in \mathbb{R}^{2}: \max \left\{\left|\frac{y-y_{0}}{b}\right|,\left|\frac{x-x_{0}}{a}\right|\right\} \leq 1\right\} \tag{2}
\end{equation*}
$$

Preliminaries

Given an arbitrary $0<p<\infty, x_{0}, y_{0} \in \mathbb{R}, a \geq 0$ and $b \geq 0$, let

$$
\begin{equation*}
E_{p, a, b}^{\left(x_{0}, y_{0}\right)}=\left\{(x, y) \in \mathbb{R}^{2}:\left|\frac{y-y_{0}}{b}\right|^{p}+\left|\frac{x-x_{0}}{a}\right|^{p} \leq 1\right\} \tag{1}
\end{equation*}
$$

Moreover, for $p=\infty$ we have

$$
\begin{equation*}
E_{p, a, b}^{\left(x_{0}, y_{0}\right)}=\left\{(x, y) \in \mathbb{R}^{2}: \max \left\{\left|\frac{y-y_{0}}{b}\right|,\left|\frac{x-x_{0}}{a}\right|\right\} \leq 1\right\} \tag{2}
\end{equation*}
$$

and for $p=0$

$$
E_{p, a, b}^{\left(x_{0}, y_{0}\right)}=\left\{(x, y) \in \mathbb{R}^{2}: \quad \begin{array}{l}
x \in\left[x_{0}-a, x_{0}+a\right] \tag{3}\\
\vee y \in\left[y_{0}-b, y_{0}+b\right] \\
\wedge \\
\wedge x=x_{0}
\end{array}\right\}
$$

Preliminaries

Given an arbitrary $0<p<\infty, x_{0}, y_{0} \in \mathbb{R}, a \geq 0$ and $b \geq 0$, let

$$
\begin{equation*}
E_{p, a, b}^{\left(x_{0}, y_{0}\right)}=\left\{(x, y) \in \mathbb{R}^{2}:\left|\frac{y-y_{0}}{b}\right|^{p}+\left|\frac{x-x_{0}}{a}\right|^{p} \leq 1\right\} \tag{1}
\end{equation*}
$$

Moreover, for $p=\infty$ we have

$$
\begin{equation*}
E_{p, a, b}^{\left(x_{0}, y_{0}\right)}=\left\{(x, y) \in \mathbb{R}^{2}: \max \left\{\left|\frac{y-y_{0}}{b}\right|,\left|\frac{x-x_{0}}{a}\right|\right\} \leq 1\right\} \tag{2}
\end{equation*}
$$

and for $p=0$

$$
E_{p, a, b}^{\left(x_{0}, y_{0}\right)}=\left\{(x, y) \in \mathbb{R}^{2}: \quad \begin{array}{l}
x \in\left[x_{0}-a, x_{0}+a\right] \tag{3}\\
\vee y \in\left[y_{0}-b, y_{0}+b\right] \\
\wedge \\
\wedge x=x_{0}
\end{array}\right\}
$$

We call $E_{p, a, b}^{\left(x_{0}, y_{0}\right)}$ the p-ellipse of size (a, b) centered at $\left(x_{0}, y_{0}\right)$.

Preliminaries

Illustration: $\partial E_{p, a, b}^{(0,0)} \cap \mathbb{R}_{0}^{+} \times \mathbb{R}_{0}^{+}$.

Preliminaries

We are given a finite planar set $Q=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, such that $q_{i}=\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}, i=1, \ldots, n(n \geq 4)$.

Preliminaries

We are given a finite planar set $Q=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, such that $q_{i}=\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}, i=1, \ldots, n(n \geq 4)$.

Let

$$
\begin{aligned}
x_{1} & =\min _{p_{i} \in P} x_{i}, \\
x_{\mathrm{r}} & =\max _{p_{i} \in P} x_{i}, \\
y_{\mathrm{b}} & =\min _{p_{i} \in P} y_{i}, \\
y_{\mathrm{t}} & =\max _{p_{i} \in P} y_{i} .
\end{aligned}
$$

Then $B(Q)=\left[x_{1}, x_{\mathrm{r}}\right] \times\left[y_{\mathrm{t}}, y_{\mathrm{b}}\right]$ is the minimal bounding rectangle of Q.

Preliminaries

For a fixed $p \geq 0$ let

$$
\begin{aligned}
C_{p}^{\mathrm{bl}}(Q) & =\bigcup_{a, b: Q \notin \operatorname{int} E_{p, a, b}^{\left(x_{1}, y_{\mathrm{b}}\right)}} E_{p, a, b}^{\left(x_{1}, y_{\mathrm{b}}\right)}, \\
C_{p}^{\mathrm{br}}(Q) & =\bigcup_{a, b: Q \notin \operatorname{int} E_{p, a, b}^{\left(x_{\mathrm{r}}, y_{\mathrm{b}}\right)}} E_{p, a, b}^{\left(x_{\mathrm{r}}, y_{\mathrm{b}}\right)}, \\
C_{p}^{\mathrm{tr}}(Q) & =\bigcup_{a, b: Q \notin \operatorname{int} E_{p, a, b}^{\left(x_{\mathrm{r}}, y_{\mathrm{t}}\right)} E_{p, a, b}^{\left(x_{\mathrm{r}}, \mathrm{y}_{\mathrm{t}}\right)},} \\
C_{p}^{\mathrm{tl}}(Q) & =\bigcup_{a, b: Q \notin \operatorname{int} E_{p, a, b}^{\left(x_{1}, y_{\mathrm{t}}\right)} E_{p, a, b}^{\left(x_{1}, y_{\mathrm{t}}\right)} .} .
\end{aligned}
$$

Preliminaries

For a fixed $p \geq 0$ let

$$
\begin{aligned}
C_{p}^{\mathrm{bl}}(Q) & =\bigcup_{a, b: Q \notin \operatorname{int} E_{p, a, b}^{\left(x_{1}, y_{\mathrm{b}}\right)}} E_{p, a, b}^{\left(x_{1}, y_{\mathrm{b}}\right)}, \\
C_{p}^{\mathrm{br}}(Q) & =\bigcup_{a, b: Q \notin \operatorname{int} E_{p, a, b}^{\left(x_{\mathrm{r}}, y_{\mathrm{b}}\right)}} E_{p, a, b}^{\left(x_{\mathrm{r}}, y_{\mathrm{b}}\right)}, \\
C_{p}^{\mathrm{tr}}(Q) & =\bigcup_{a, b: Q \notin \operatorname{int} E_{p, a, b}^{\left(x_{\mathrm{r}}, y_{\mathrm{t}}\right)} E_{p, a, b}^{\left(x_{\mathrm{r}}, \mathrm{y}_{\mathrm{t}}\right)},} \\
C_{p}^{\mathrm{tl}}(Q) & =\bigcup_{a, b: Q \notin \operatorname{int} E_{p, a, b}^{\left(x_{1}, y_{\mathrm{t}}\right)} E_{p, a, b}^{\left(x_{1}, y_{\mathrm{t}}\right)} .} .
\end{aligned}
$$

We further on assume $\operatorname{int} C_{p}^{\mathrm{bl}}(Q), \operatorname{int} C_{p}^{\mathrm{br}}(Q), \operatorname{int} C_{p}^{\mathrm{tr}}(Q), \operatorname{int} C_{p}^{\mathrm{tl}}(Q)$ are mutually exclusive.

p-hull

Definition

Let $Q=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\} \subset \mathbb{R}^{2}$ and $p \geq 0$. The p-hull of Q, denoted by $H_{p}(Q)$, is defined by

$$
\begin{equation*}
H_{p}(Q)=\partial\left(B(Q) \backslash C_{p}^{\mathrm{bl}}(Q) \backslash C_{p}^{\mathrm{br}}(Q) \backslash C_{p}^{\mathrm{tr}}(Q) \backslash C_{p}^{\mathrm{tl}}(Q)\right) . \tag{4}
\end{equation*}
$$

Properties of a p-hull

Proposition

Let $Q=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\} \subset \mathbb{R}^{2}$ and $p \geq 0$. Then we have the following.

Properties of a p-hull

Proposition

Let $Q=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\} \subset \mathbb{R}^{2}$ and $p \geq 0$. Then we have the following.
(1) If $p=1$ then $H_{p}(Q)$ is the convex hull of Q.

Properties of a p-hull

Proposition

Let $Q=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\} \subset \mathbb{R}^{2}$ and $p \geq 0$. Then we have the following.
(1) If $p=1$ then $H_{p}(Q)$ is the convex hull of Q.
(2) If $p=\infty$ then $H_{p}(Q)$ is the X - Y hull of Q (see Nicholl et al, 1983).

Properties of a p-hull

Proposition

Let $Q=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\} \subset \mathbb{R}^{2}$ and $p \geq 0$. Then we have the following.
(1) If $p=1$ then $H_{p}(Q)$ is the convex hull of Q.
(2) If $p=\infty$ then $H_{p}(Q)$ is the X - Y hull of Q (see Nicholl et al, 1983).
(3) If $p=0$ then $H_{p}(Q)=\partial B(Q)$.

Properties of a p-hull

Other properties:

Properties of a p-hull

Other properties:
(1) $H_{p}(Q)$ is translation- and scale-invariant for any $p \geq 0$, i.e. $\circledast H_{p}(Q)=H_{p}(\circledast Q)$.

Properties of a p-hull

Other properties:
(1) $H_{p}(Q)$ is translation- and scale-invariant for any $p \geq 0$, i.e. $\circledast H_{p}(Q)=H_{p}(\circledast Q)$.
(2) $H_{p}(Q)$ is not rotation-invariant (thus it is orientation-dependent) for $p \neq 1$.

Properties of a p-hull

Other properties:
(1) $H_{p}(Q)$ is translation- and scale-invariant for any $p \geq 0$, i.e. $\circledast H_{p}(Q)=H_{p}(\circledast Q)$.
(2) $H_{p}(Q)$ is not rotation-invariant (thus it is orientation-dependent) for $p \neq 1$.
(3) $H_{p}(Q)$ is convex for $p \leq 1$.

Properties of a p-hull

Other properties:
(1) $H_{p}(Q)$ is translation- and scale-invariant for any $p \geq 0$, i.e. $\circledast H_{p}(Q)=H_{p}(\circledast Q)$.
(2) $H_{p}(Q)$ is not rotation-invariant (thus it is orientation-dependent) for $p \neq 1$.
(3) $H_{p}(Q)$ is convex for $p \leq 1$.
(9) If $p^{\prime} \geq p$, then $H_{p^{\prime}}(Q) \subseteq H_{p}(Q)$.

Example: $p=0.1$

Example: $p=0.5$

Example: $p=1.0$

Example: $p=2.0$

Example: $p=50$

Computation

Let

$$
\begin{aligned}
& q_{\mathrm{bl}_{1}}=\underset{q_{i} \in Q: x_{i}=x_{1}}{\arg \min } y_{i}, \quad q_{\mathrm{bl}_{2}}=\underset{q_{i} \in Q: y_{i}=y_{\mathrm{b}}}{\arg \min } x_{i}, \\
& q_{\mathrm{br}_{1}}=\underset{q_{i} \in Q: y_{i}=y_{\mathrm{b}}}{\arg \max } x_{i}, \quad q_{\mathrm{br}_{2}}=\underset{q_{i} \in Q: x_{i}=x_{\mathrm{r}}}{\arg \min } y_{i}, \\
& q_{\operatorname{tr}_{1}}=\quad \arg \max y_{i}, \quad q_{\operatorname{tr}_{2}}=\arg \max x_{i}, \\
& q_{i} \in Q: x_{i}=x_{\mathrm{r}} \quad q_{i} \in Q: y_{i}=y_{\mathrm{t}} \\
& q_{\mathrm{tl}_{1}}=\quad \arg \min x_{i}, \quad q_{\mathrm{tl}_{2}}=\quad \arg \max y_{i} . \\
& q_{i} \in Q: y_{i}=y_{\mathrm{t}} \\
& q_{i} \in Q: x_{i}=x_{1}
\end{aligned}
$$

Note that all the points $\in \partial B(Q)$.

Computation (cont'd)

Decomposition:

$$
H_{p}(Q)=\partial\left(B(Q) \backslash C_{p}^{\mathrm{bl}}(Q) \backslash C_{p}^{\mathrm{br}}(Q) \backslash C_{p}^{\mathrm{tr}}(Q) \backslash C_{p}^{\mathrm{tl}}(Q)\right)
$$

Computation (cont'd)

Decomposition:

$$
\begin{aligned}
H_{p}(Q) & =\partial\left(B(Q) \backslash C_{p}^{\mathrm{bl}}(Q) \backslash C_{p}^{\mathrm{br}}(Q) \backslash C_{p}^{\mathrm{tr}}(Q) \backslash C_{p}^{\mathrm{tl}}(Q)\right) \\
& =\left(\partial C_{p}^{\mathrm{bl}}(Q) \cup \partial C_{p}^{\mathrm{br}}(Q) \cup \partial C_{p}^{\mathrm{tr}}(Q) \cup \partial C_{p}^{\mathrm{tl}}(Q)\right) \cap B(Q) \\
& \cup \overline{q_{\mathrm{bl}_{2}} q_{\mathrm{br}_{1}} \cup \overline{q_{\mathrm{br}_{2}} q_{\mathrm{tr}_{1}}} \cup \overline{q_{\mathrm{tr}_{2}} q_{\mathrm{tl}_{1}}} \cup \frac{q_{\mathrm{tl}_{2}} q_{\mathrm{bl}_{1}}}{} .}
\end{aligned}
$$

Computation (cont'd)

Decomposition:

$$
\begin{aligned}
H_{p}(Q) & =\partial\left(B(Q) \backslash C_{p}^{\mathrm{bl}}(Q) \backslash C_{p}^{\mathrm{br}}(Q) \backslash C_{p}^{\mathrm{tr}}(Q) \backslash C_{p}^{\mathrm{tl}}(Q)\right) \\
& =\left(\partial C_{p}^{\mathrm{bl}}(Q) \cup \partial C_{p}^{\mathrm{br}}(Q) \cup \partial C_{p}^{\mathrm{tr}}(Q) \cup \partial C_{p}^{\mathrm{tl}}(Q)\right) \cap B(Q) \\
& \cup \frac{q_{\mathrm{bl}_{2}} q_{\mathrm{br}_{1}}}{q_{\mathrm{br}_{2}} q_{\mathrm{tr}_{1}} \cup \overline{q_{\mathrm{tr}_{2}} q_{\mathrm{tl}_{1}}} \cup \overline{q_{\mathrm{tl}_{2}} q_{\mathrm{bl}_{1}}} .}
\end{aligned}
$$

Moreover:

$$
\begin{align*}
\partial C_{p}^{\mathrm{bl}}(Q) & =\partial C_{p}^{\mathrm{bl}}\left(\left\{q_{i} \in Q: x_{i} \leq x_{\mathrm{bl}_{2}} \wedge y_{i} \leq y_{\mathrm{bl}_{1}}\right\}\right) \\
\partial C_{p}^{\mathrm{br}}(Q) & =\partial C_{p}^{\mathrm{br}}\left(\left\{q_{i} \in Q: x_{i} \geq x_{\mathrm{br}_{1}} \wedge y_{i} \leq y_{\mathrm{br}_{2}}\right\}\right) \tag{6}\\
\partial C_{p}^{\operatorname{tr}}(Q) & =\partial C_{p}^{\operatorname{tr}}\left(\left\{q_{i} \in Q: x_{i} \geq x_{\mathrm{tr}_{2}} \wedge y_{i} \geq y_{\mathrm{tr}_{1}}\right\}\right) \\
\partial C_{p}^{\mathrm{tl}}(Q) & =\partial C_{p}^{\mathrm{tl}}\left(\left\{q_{i} \in Q: x_{i} \leq x_{\mathrm{tl}_{1}} \wedge y_{i} \geq y_{\mathrm{tl}_{2}}\right\}\right)
\end{align*}
$$

Computation (cont'd)

Computation (cont'd)

(1) Naïve algorithm: $O\left(n^{3}\right)$ time. :-(

Computation (cont'd)

(1) Naïve algorithm: $O\left(n^{3}\right)$ time. :-(
(2) Algorithm proposed by Gągolewski, Nowakiewicz, Dębski (2009) - generalizes Graham's scan (Graham, 1972): $O(n \log n)$ time, $O(n)$ memory.

Computation (cont'd)

(1) Naïve algorithm: $O\left(n^{3}\right)$ time. :-(
(2) Algorithm proposed by Gągolewski, Nowakiewicz, Dębski (2009) - generalizes Graham's scan (Graham, 1972): $O(n \log n)$ time, $O(n)$ memory.
(3) Output: $P \cap \partial C_{p}^{\mathrm{bl}}(Q)$ (without loss of generality).

Computation (cont'd)

(1) Naïve algorithm: $O\left(n^{3}\right)$ time. :-(
(2) Algorithm proposed by Gągolewski, Nowakiewicz, Dębski (2009) - generalizes Graham's scan (Graham, 1972): $O(n \log n)$ time, $O(n)$ memory.
(3) Output: $P \cap \partial C_{p}^{\mathrm{bl}}(Q)$ (without loss of generality).
(9) Input: $p \geq 0, W=\left\{q_{i} \in Q: x_{i} \leq x_{\mathrm{b}_{2}} \wedge y_{i} \leq y_{\mathrm{b}_{1}}\right\}$ as an array sorted by x coordinate $w[1], \ldots, w[m]$.

Computation (cont'd)

(1) Naïve algorithm: $O\left(n^{3}\right)$ time. :-(
(2) Algorithm proposed by Gągolewski, Nowakiewicz, Dębski (2009) - generalizes Graham's scan (Graham, 1972): $O(n \log n)$ time, $O(n)$ memory.
(3) Output: $P \cap \partial C_{p}^{\mathrm{bl}}(Q)$ (without loss of generality).
(1) Input: $p \geq 0, W=\left\{q_{i} \in Q: x_{i} \leq x_{\mathrm{b}_{2}} \wedge y_{i} \leq y_{\mathrm{b}_{1}}\right\}$ as an array sorted by x coordinate $w[1], \ldots, w[m]$.
(0) Denotation: by $E_{p, q_{i}, q_{j}}^{\left(x_{0}, y_{0}\right)}$ we mean an p-ellipse centered at $\left(x_{0}, y_{0}\right)$ interpolating $q_{i} \neq q_{j}$.

Computation (cont'd)

1 Create an empty stack S;
2 Push $w[1]$ into \mathbf{S};
$3 \quad i:=2$;
4 while $(i<n)$ and $\left(w[i]_{y} \geq w[1]_{y}\right)$ do
$5 \quad i:=i+1$;
6 Push $w[i]$ into \mathbf{S};
7 for $j=i+1, i+2, \ldots, n$ do
8
9
10
11
12 if $\left(\mathbf{S}[\# \mathbf{S}]_{y}<w[j]_{y}\right)$ then $\{$ while $(\# \mathbf{S} \geq 2)$ and $\left(\mathbf{S}[\# \mathbf{S}-1] \in E_{p, \mathbf{S}[\# \mathbf{S}], w[j]}^{\left(x_{\mathrm{bl}}, y_{\mathrm{bl}}\right)}\right)$ do Pop from S ;
Push $w[j]$ into \mathbf{S};
\}
13 return S;

Computation (cont'd)

Implementation: phull 0.1-2 - package available on CRAN. (http://cran.r-project.org/web/packages/phull/index.html)

Computation (cont'd)

Implementation: phull 0.1-2 - package available on CRAN. (http://cran.r-project.org/web/packages/phull/index.html)

Example: axes rotation.

Computation (cont'd)

Implementation: phull 0.1-2 - package available on CRAN. (http://cran.r-project.org/web/packages/phull/index.html)

Example: axes rotation.
library(phull); \# load the library

Computation (cont'd)

Implementation: phull 0.1-2 - package available on CRAN. (http://cran.r-project.org/web/packages/phull/index.html)

Example: axes rotation.

```
library(phull); # load the library
translateAndRotate <- function(data, x0, y0, angle)
{ ... }
rotateAndTranslate <- function(data, x0, y0, angle)
{ ... }
```


Computation (cont'd)

```
set.seed(98765); n <- 1000; p <- 3.0;
data <- matrix(c(rnorm(n), rt(n, 10)), ncol=2); # input data
nres <- 50; # "resolution"
```


Computation (cont'd)

```
set.seed(98765); n <- 1000; p <- 3.0;
data <- matrix(c(rnorm(n), rt(n, 10)), ncol=2); # input data
nres <- 50; # "resolution"
ptest <- phull(data, p=p);
discr_0 <- as.matrix(ptest, nres=nres); # sample
```


Computation (cont'd)

```
set.seed(98765); n <- 1000; p <- 3.0;
data <- matrix(c(rnorm(n), rt(n, 10)), ncol=2); # input data
nres <- 50; # "resolution"
ptest <- phull(data, p=p);
discr_0 <- as.matrix(ptest, nres=nres);
# compute the p-hull
# sample
print(ptest)
p-hull, p=3
data: data
1000 points, bounding rectangle: (...)
```


Computation (cont'd)

```
data2 <- translateAndRotate(data, angle=-pi/6
    -ptest$xrange[1], -ptest$yrange[1]);
ptest2 <- phull(data2, p=p); # compute the p-hull
discr_30 <- as.matrix(ptest2, nres=nres); # sample
discr_30 <- rotateAndTranslate(discr_30, angle=pi/6,
    ptest$xrange[1], ptest$yrange[1]);
```


Computation (cont'd)

```
data2 <- translateAndRotate(data, angle=-pi/6
    -ptest$xrange[1], -ptest$yrange[1]);
ptest2 <- phull(data2, p=p); # compute the p-hull
discr_30 <- as.matrix(ptest2, nres=nres); # sample
discr_30 <- rotateAndTranslate(discr_30, angle=pi/6,
    ptest$xrange[1], ptest$yrange[1]);
```

plot(data, type="p", pch=1);
lines(discr_0, col=2);
lines(discr_30, col=4);

Computation (cont'd)

```
data2 <- translateAndRotate(data, angle=-pi/6
    -ptest$xrange[1], -ptest$yrange[1]);
ptest2 <- phull(data2, p=p); # compute the p-hull
discr_30 <- as.matrix(ptest2, nres=nres); # sample
discr_30 <- rotateAndTranslate(discr_30, angle=pi/6,
    ptest$xrange[1], ptest$yrange[1]);
```

plot(data, type="p", pch=1);
lines(discr_0, col=2);
lines(discr_30, col=4);
... and so on...

Computation (cont'd)

Computation (cont'd)

$p=0.5$

Computation (cont'd)

$$
p=20
$$

Related packages

alphahull (Pateiro-Lopez, Rodriguez-Casal, 2009): α-shapes (Edelsbrunner et al, 1983).

References

R H．Edelsbrunner，D．G．Kirkpatrick，R．Seidel（1983）．On the shape of a set of points int the plane．IEEE Trans．Inf．Theor．29（4），551－559．
（ M．Gągolewski，P．Grzegorzewski（2009）．A geometric approach to the construction of scientific impact indices．Scientometrics．In press． DOI：10．1007／s11192－008－2253－y．

围 M．Gągolewski，M．Nowakiewicz，M．Dębski（2009）．Efficient algorithms for computing＂geometric＂scientific impact indices．Submitted for publication．
（ R．L．Graham（1972）．An efficient algorithm for determining the convex hull of a finite planar set．Information Processing Letters 1，132－133．

囦 T．M．Nicholl，D．T．Lee，Y．Z．Liao，C．K．Wong（1983）．On the X－Y convex hull of a set of X－Y polygons．BIT 23，456－471．

圊 B．Pateiro－Lopez，A．Rodriguez－Casal（2009）．alphahull：Generalization of the convex hull of a sample of points in the plane，see alphahull＠CRAN．

Thank you for your attention.

