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CHI-SQUARE TESTS WITH ONE DEGREE OF FREEDOM;
EXTENSIONS OF THE MANTEL-HAENSZEL PROCEDURE

NATHAN MANTEL
National Cancer Institute

A published method for analyzing multiple 2 X2 contingency tables
arising in retrospective studies of disease is extended in application
and form. Extensions of application include comparisons of age-ad-
justed death rates, life-table analyses, comparisons of two sets of
quantal dosage-response data, and miscellaneous laboratory applica-
tions as appropriate. Extensions in form involve considering multiple
contingency tables with arbitrarily many rows and/or columns, where
rows and columns are orderable, and may even be on a continuous scale.
The assignment of some score for each row or column is essential to use
of the method. With scores assigned, a deviation of the sum of cross
products from expectation, and its variance conditioned on all mar-
ginal totals, are computed for each table and a chi square is deter-
mined corresponding to the grand total of the deviations. For various
specific instances and for various scoring procedures, the procedure
extends or is equivalent to the asymptotic form of many known non-
parametric techniques.

1. INTRODUCTION

N 1959 Mantel and Haenszel [8], in a review of the statistical problems of
Iretrospective studies of disease, provided some procedures for analyzing
data and establishing associations from such studies. Noteworthily, they sug-
gested the use of a summary chi square with one degree of freedom in testing
the association of disease incidence with any particular factor when the effect
of any other factor or group of factors is held constant. For any set of specified
factors, e.g. age, race, sex, and occupation, there is a 2X2 contingency table,
individuals being classified as with or without the disease, and with or without
the study factor. In each such 2X2 table, conditional on the marginal totals,
Mantel and Haenszel determine the expectation and variance of the number of
diseased individuals positive for the study factor. Summation of the observed
and expected number of such cases is made over all the 2X2 tables, and chi
square is computed as the square of the cumulated discrepancy, corrected for
continuity, divided by the sum of the conditional variances.

(Along with the significance testing procedure, the authors also provided
various measures of relative risk as an index of the strength of the association.
They pointed out that if, in some sense, e.g. constant logit or probit difference,
the relative risk could be assumed uniform over the various contingency tables,
it would be appropriate to make some best estimate of this uniform relative
risk. Unwilling to make the assumption of uniformity, the authors suggested
their procedure which, to some degree, weights the separate relative risks by
importance, statistical power being increased by the reinforcement of relative
risks prevailing in the same direction.)

The present report covers extensions of the Mantel-Haenszel (M-H) pro-
cedure in two directions. In the first it is recognized that the procedure is not
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limited in application to the problem of retrospective studies, and its suitability
for other kinds of problems is described. In the second extension, the case is
considered in which the number of levels for the study factor is arbitrary, but
orderable, rather than limited to two. Mantel and Haenszel did cover the case
of study factors at several levels and gave a specific procedure for calculating
chi square with two degrees of freedom for the three-level case. By taking order-
ing into account, single degree of freedom chi squares can be determined for the
multiple level problem. A variety of standard nonparametric procedures, in
asymptotic form, can be derived, and extended beyond their present range of
application, by manipulating the score assigned to a particular study factor
level.

2. EXTENSIONS IN APPLICATION

The author has found the Mantel-Haenszel chi-square procedure to be ap-
plicable to data from a variety of laboratory investigations. Suppose an investi-
gator is comparing two treatment procedures where response to treatment can
be put in the quantal, all-or-none, form. It will frequently be the case that the
data obtained will include a number of comparisons of the very same treat-
ments. There may have been one or more additional adjustable factors, so that
comparison is made at several combinations of the adjustable factors. Alloca-
tion of litter mate animals to the two treatment procedures may permit a
separate comparison for each litter. Finally, the investigator have may con-
ducted a series of repeat experiments, comparison of the two procedures being
possible in each of the experiments. One wishes then to employ a powerful
statistical procedure which would be sensitive to any consistent difference in
outcome for the two treatments.

By considering each of the several comparisons in a study as falling into the
2X2 contingency table form, the M-H procedure can be applied. Expectations
and conditional variances can be determined for each such table, and a sum-
mary chi square calculated.

Application of the M-H procedure is suggested also for certain problems for
which there are standard methodologies. Consider, for example, the comparison
of two age-adjusted (or even age, sex, and race-adjusted) death or disease in-
cidence rates [7]. Essentially, for each age interval one has a 2 X2 contingency
table, the age specific rates for each sample or population being based on the
ratio of the number responding to the number exposed. An overall summary
chi square for comparing the 2 sets of age specific rates can be calculated;
effectively 2 age-adjusted rates are compared, where adjustment is by the
indirect method and the set of standard age specific rates are defined by the
rates for 2 populations combined.

A somewhat similar comparison arises in problems for which the life-table
procedure [10] is ordinarily appropriate. For each particular interval following
some zero time, one knows the population or sample size at the beginning of
the interval and the number of deaths (responses) during the interval. Sample
sizes may decrease between successive intervals because of death or loss to
follow-up, or for reasons flowing from the arrangement of the study. Here it
is suggested that the M-H procedure could be appropriate for comparing two
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sets of such follow-up data, a 2X2 contingency table arising from each study
interval. The usefulness of the procedure in this problem and the interesting
leads to which it gives rise will be the subject of a separate communication.

As a final extension in application, it is suggested that the M-H procedure can
sometimes be applied to data for which a complex methodology now exists,
evaluation of quantal dosage response data by the probit method [3]. By
standard methods, if one were interested in comparing two sets of data, one
would determine the median effective dose (EDjo, or LDsy for median lethal
dose) for each set and compare these for statistical significance. Under some
situations it would be necessary to fit the data under the restriction of paral-
lelism, and the correlation of the two EDj;¢’s would then have to be considered.
Important to this procedure is the assumption of the validity of the probit
model and also the assumption of parallelism. Presumably, the actual differ-
ence in the two EDj’s is of interest.

But suppose that we are dealing with a single effective agent and wish to
demonstrate that manipulation of another factor can increase (or decrease)
the proportion responding. Situations may arise in which we may be unwilling
to accept the reasonableness of the probit model for the altered situation,
though in the original situation it could have been justified By the simple
device of employing the same dose levels at both factor levels, the M-H pro-
cedure can be used to evaluate any consistent difference in the proportion re-
sponding with no need to assume the validity of the probit model at either
level. There is no need either to calculate ED;¢’s, and the M-H procedure can
even be applied to data which do not permit the determination of EDs’s.
The M-H test is, in fact, a valid procedure for comparing two EDsy’s deter-
mined by the Kérber’s method, where the data permit their calculation.

Application of the M-H procedure to data by Eagle and reported by Corn-
field and Mantel [3] is illustrated in Table 1. The data relate to the effective-
ness of immediately injected or 1% hour delayed penicillin in protecting rabbits
against lethal inoculation with B-hemolytic streptococci. (In Cornfield and
Mantel [3], data are shown also for a 6-hour delay; the data are used to illus-

TABLE 1. APPLICATION OF MANTEL-HAENSZEL PROCEDURE
TO DATA OF EAGLE

No delay 1% hour delay
Penicillin No. cured/ No. cured/ Expectation* Variance**
level No. dying No. dying A A;
A;/B; Ci/D;

1/8 0/6 0/5 0 0
1/4 3/3 0/6 1.5 27/44
1/2 6/0 2/4 4.0 32/44

1 5/1 6/0 5.5 11/44

4 2/0 5/0 2.0 0

* B(Ag) =N M,/ Ts, Ny =Ai+Bi, My, =Ai+Cs, Ty =A;+Bi+Ci+D;
¥k V(A43) =Niy,MyNo Mo /TiHTi —1), Noy=Ci+Dj;, My =B;+D;.
TA4;=168; TE(4;) =13; ZV(4;)=70/44
2.52 X44
70

X =(|24; =ZE(4;)| —0.52/ZV(4;) = =3.93.
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trate the computation of three-way parallel dosage response curves by the
Cornfield-Mantel method.) A 2X2 contingency table is constructed for each
of the common levels of penicillin employed.

That there is significant evidence for a higher cure rate when treatment is
immediate is demonstrated in Table 1 without the calculation of EDjsy’s or the
fitting of parallel dosage response curves.

3. EXTENSIONS TO THE CASE OF STUDY FACTORS AT SEVERAL LEVELS

Suppose the factor under study may assume & orderable levels. There will
be a separate 2 X% contingency table for each specified set of control factors.
Comparing disease cases with controls, for example, in the ¢th contingency
table there will be 4;, disease cases at study factor level j, B;; control cases.
We may arbitrarily assign an X value of 1 to disease cases, 0 to controls; to
the 7’th study factor level let us consider that there is attached a Y score, Y,
the nature of which will we discuss below. The appearance of the 7’th contin-
gency table will then be as shown in Table 2.

TABLE 2. ILLUSTRATION OF A 2Xk CONTINGENCY TABLE

Study factor level, j
0 1 2 3.-:-k—1 Total
X\Y| Y, Y1 Y. Yy« Yia —
With disease 1 A, A, Ao Ag o v Apyy Ny
Free of disease 0 B, By, Bs; Bs; + + + Bry Ny
Total — | Mo, My My M- Mgy T

The statistic of interest with which we shall concern ourselves here, and which
we justify below, is > XV = ZA 3, Y j, or rather its deviation from expectation.

Under the null hypothesis of no association, the expected value of DXV sub-
ject to all marginal totals (the N’s and M’s) fixed is T. X, V. But

X:=Ny/Ts; Vi= Y M;,Y;/T; and E(2,XY)= > Ny 2, M;Y;/T..
J H J

The variance of »_XY conditional on the marginal totals can be determined
once we recognize that, irrespective of the marginal totals, it is simply the vari-
ance of the total of a sample size Ny, drawn without replacement from a finite
population of size T;. In the finite population the frequency of each Y; value
is M,,. The variance of the total is Ny, Xvariance of the population X finite
population correction factor. The population variance is given by

2
1 (Z Mi£Yi>
\ -
ot =T ;Mnyj——']-*r‘— ey
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while the correction factor is N,,/(T:—1).
In summary, we get as the variance of » XY= > 4,Y;
7

NN,
COTYT: — 1)

V( ; A,-,.Y,-) ,:T; S MY~ (6‘: M,‘Y,-)z] ©)

For a single contingency table chi square, with one degree of freedom, can
be computed as

N, 2
(ZAj..Yi— “ZMJ-.-Y,)
3 T: 5

x? = (3)

V< zj)A,.,.Y,-)

and a summary chi square, again with one degree of freedom, can be computed
as

[Z ZAj‘Yj - ZE( ZA,,.Y,)T
Xt = ——r - : )

Tr(Tar)

(No general specification has been made here of how to correct for continuity.
The correction would depend on the Y scores employed and some scoring pro-
cedures could make difficult the justification of any particular correction. A
practical procedure might be to take the correction as one-half the smallest
difference between any two successive Y scores—but the possible increments
in > A4;Y; could, however, be much smaller than this smallest difference.)

We come now to justification for the use of the test statistics suggested.
Note first that in a single contingency table the test statistic is of the form
> (X —X)(Y—7). We might, in opposition, have considered as test statistics,
the regression of ¥ on X, > (X—X)(Y—7)/ > (X —X)? or the regression of
XonY, D (X-X)(Y-7)/ 2 (Y—T)2 Whichever of the latter two we prefer,
we find that weighting by precisions, which will be proportional to >, (X —X)?
or to Y.(Y—7)2 will leave the weighted regression coefficient dependent only
on ».(X—X)(Y—7). Assuming no important change in variability between
contingency tables, the statistic selected becomes the one of choice. It can be
seen also that, effectively, we are testing the sum total of ¥ scores of all diseased
(or non-diseased) individuals, conditional on all marginal totals in all the con-
tingency tables. By testing > XY rather than the regression coefficients we
also avoid problems of non-linearity. A linear dependence of X on Y could
probably not be justified, but »,XY could still be powerful for detecting a
progressive dependence.

The notion of regression comes into play when, in addition to testing overall
significance, we wish to obtain some measure of the degree of association of
disease and the study factor or the degree of difference between disease and
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control subjects. The weighted average regression of ¥ on X would be
Y EX - -7/ XXX =X
for X on Y it would be

PIDI EPICERIVDIPNC SR IR
In the problem considered, the first of the two weighted average regressions
would seem the more appropriate. With X a 0, 1 variable, > (X ~X)? within
a contingency table reduces to N1,N.,/T; and the average regression or, more
properly, the weighted average difference in score between disease cases and
controls becomes

N1£N2t'
T

T (5)

Ny,

2. M Y,-] / 2
£ 7 [
This weighted average difference may be recognized to follow the standard

formula, the difference in average score for disease and control cases in each
contingency table being weighted by N1,Na,/(Ny;+Ne,).

Specification of scores

The results of analysis by the procedure just indicated may vary markedly
according to how Y scores are assigned to the various study factor levels. It is
important then that such scoring be made in an objective fashion, one inde-
pendent of the differences occurring between disease and control subjects in
their distribution by study factor level. It may be possible sometimes to make
a reasonable assignment of scores in advance without reference to the study
outcomes, or the assignment made may be such as to make the average scores
meaningful, e.g. smoking category scores may be such that the average score
approximates average cigarette use.

Some other objective scoring procedures which may be useful are now de-
scribed. '

1. Rather simply one might assign the score j to the j’th study factor level.
This leads to simple computational procedures and does have increased sta-
tistical power for any progressive effects of the study factor. There is no neces-
sary implication in using this scoring procedure that the various levels of the
study factor are, in some sense, equally spaced.

2. Scoring may be by ranks, a tied ranking being assigned to individuals at
the same study factor level. Rankings may be done separately for each con-
tingency table or across all contingency tables combined. To standardize for
the varying number of individuals in the different tables, the rank should be
expressed relative to the total, T';, for the table.

For separate table ranking procedures, and note that this results in a separate
set of scores for each contingency table, the ranking scores become:

1 /M, +1
Yo = — (2212,
0; T;( 2 ): (6)
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1 My +1
Yi=—(M, + ——) ;
L T,-( o+ 2 ): (")
1 M, +1
Yy = —( My + M, + ———) ;
2 Ti( o, + My, + 2 ) )
1 M, +1
Y, = — M; +—).
i T,(J,Zo J‘+ 2 ) (9)

Where data from all tables are combined in assigning ranks, so that the same
scoring procedure applies for all tables, the scoring formula is

ZM,‘+1]

Y, =

ZZM,.+

t j=0

(10)

}:T

(The scoring procedures just described based on tied ranks strongly resemble
Bross’ ridit scores [1]. The distinction is that Bross’ ridits are based on only
control data which presumably are so extensive that they define a relatively
identified distribution. In practice [12, 13], however, such control data have
been only about as extensive as the study data. Where statistical variation in
both control and study group data must be taken into account, ridit procedures
reduce to standard ranking procedures, though tied ranks may be frequent.
The ridit procedure has been used primarily in a descriptive fashion, though the
setting of confidence intervals on average ridits, assuming the uniform distri-
bution variance of 1/12, has a significance testing aspect. If the identified dis-
tribution is obtained by combining control data across several contingency
tables, it is likely that the resulting variance will be greater than that existing
in the separate tables. The use of the standard variance of 1/12 would lead to
excessively wide confidence intervals.

There is a disturbing feature about the use of ridits or ranks. In injury
analysis, for example, fatal accidents may be relatively rare and will so be
assigned a score only slightly higher than that for severe, or extremely severe,
accidents. In contrast, with injuries of minor and moderate severity common,
the difference in score between two such injuries will be large.)

Scoring of study factors with continuous scales

It may be noted that the variance and chi-square formulas given above
would be appropriate even if data were not in contingency table form. This
was deliberate, to permit their applicability to arbitrary situations including
those in which there is a distinctive study factor value for each individual in
the study. The relationship of the resulting analysis to standard analyses when
this is done is interesting. Let us consider the results of applying various scoring
procedures to the individual study factor values.

1. General scoring procedure —Y scores already known for each individual.

For a single contingency table, the chi-square test is a test of the difference
in the two Y averages, conditional on the combined distribution of Y scores
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and on the number of disease and control subjects in the table. As such it can
be recognized to be the asymptotic form of the Pitman permutation test [9]
for comparing two averages. The extension to the case of several contingency
tables can then be viewed as a generalization of the asymptotic form of the
Pitman test.

In particular, where each contingency table comprises but two individuals,
one disease case and one control, the chi-square test corresponds to the asymp-
totic form of Fisher’s randomization test for matched pairs [4]. That test is
one in which the null distribution of the sum of the paired differences is deter-
mined assuming the sign of each particular difference to be positive or negative
with equal probability.

2. Rank scoring procedures.

For a single contingency table in which the ranks would range from 1 to T
(or from 1/T to 1), the chi-square test is a test of the difference in average
ranks for the two groups. As such it is the asymptotic form of the rank sum
test which has been reported by various investigators including Wilcoxon [11].
Extensions to the case of several contingency tables may be regarded as general-
izations of the asymptotic form of the rank sum test. For several contingency
tables, as indicated above, rankings may be done separately for each table,
1/T; to 1, or in summary for all tables, 1/ >, T;to 1.

Where ranking is done separately for each table, and there are but two indi-
viduals in each table, one disease case and one control, the chi-square test cor-
responds to the asymptotic form of the sign test [2]. The test here is on the
departure from expected equality of the number of positive and negative signs.

With still other scoring procedures, e.g. rankits, the suggested chi-square
methodology will correspond to still other standard analytic procedures.

The case of disease status at several levels

It may sometimes be the situation that there are more than the two disease
categories, well or ill—disease may be in a more or less advanced stage or of a
more or less serious nature. Suppose that the disease status can be ordered
in some way so that disease scores can be assigned. For generality, so that we
may cover both the continuous case and the case of a finite number of disease
statuses, let the status score of the j’th individual be X, his study factor
score, Y.

For a single set of data the departure of »_X,Y; from its expectation is

X 2 Y;
T

2 XY~ (1n

Using finite population concepts, under the hypothesis of independence the
variance of Y XY, subject to the observed set of X’s and ¥’s in the data,
becomes

T%’x"y

VIEXY) = 5

(12)
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- (26 E2 />
(21 B2/

For several sets of data chi square, with a single degree of freedom, can be
computed on the basis of the cumulated departures and variances as

2 X2 Y
|- 2]
Xt = i - (13)

N {EX&]}’ TG

7
T,-—lh,:X" T IZY" T:

Use of this chi-square procedure is equivalent to testing the simple regression
coefficient for a single set of data or the pooled regression coefficient where
there are several sets of data. That a linear regression coefficient is being tested
does not mean that an assumption of linearity is being made. Rather it is that
test of a linear component of regression provides power for detecting any pro-
gressive association which may exist between the variables studied.

According to how X and Y scores are assigned, chi square may have various
interpretations, the basic one being that it provides a test with power for any
progressive relation between X and Y. It may be noted that where the X’s and
Y’s are ranks, for a single set of data, chi square tests the coefficient of rank
correlation. For several sets of data, and using ranking scores from 1/7'; to 1
in each set, the procedure provides a generalization of the coeflicient of rank
correlation.

As desired, and corresponding to any particular value of chi square, summary
regression coefficients, correlation coefficients, or weighted average differences
between two groups can be calculated. Formulas for doing so are readily
determined and are not given here.

where

Relation between proposed and standard methodology

The proposed chi-square test is, in general form, a test of the pooled covari-
ance between X and Y, conditional on the set of observed X and Y values.
By usual analysis of covariance techniques, one would have made an F test of
the estimated common slope for the several sets of data—here the assumption
of homogeneity of variances is made, and the data are considered as samples
from infinite normal populations. The F value, and its significance, remains
the same whether one considers the regression of ¥ on X or of X and Y, and
so there is no loss in generality if we consider the F' test to relate to the regres-
sion of ¥ on X. (Though the F value is not altered by incorrectly considering
the regression of the independent on the dependent variable, the value and
meaningfulness of the regression coefficient is affected. Going further, if one is
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interested in computing meaningful correlation coefficients, one should be
certain that the X, Y values can be considered as samples from a bivariate
population, rather than as a pair of variate values, one independent, the other
dependent.)

For a single set of data, the relationship between x? and the F (or {2) value
obtained in testing the regression coeflicient or the difference between two
averages by standard methods can be expressed alternatively as

or as

where F is with (1, T'—2) degrees of freedom, x? with one degree of freedom.
Where F or chi square is greater than unity, usually a minimum requirement
for significance, F will exceed chi square. The excess of F over chi square will
ordinarily be sufficient to correspond to more highly significant probability
values; this is true even though chi square can be considered to be an F with
infinite denominator degrees of freedom.

Perhaps the greater significance for the F value relates to the stronger as-
sumption of normality implicit in its use. But there are indications that, in cir-
cumstances, use of the F statistic may yield probability values corresponding
more closely to the permutational distribution—Greenhouse [5] suggests that
the use of F errs slightly on the radical side, use of chi square on the conserva-
tive side. The range of possibly computed F values is from 0 to infinity, which is
the range of the F distribution. The conservatism of chi square may be related
to the fact that, as computed, it must range between 0 and T —1 although the
chi square distribution has no upper bound. To the points above it may be
noted that Kendall [6], in determining the asymptotic form of the Pitman per-
mutation test obtains the ¢ test, the use of which is equivalent to the use of F,
rather than chi square. In his development Kendall takes into account the 3rd
and 4th moments.

The simple relation between the proposed chi square and F no longer applies
when several sets of data are considered. Although both are tests of the sum
of cross-products of X’s and Y’s cumulated over the several data sets, there is
implicit in the F test, but not in the chi square test, an assumption of homo-
geneity of variances. One may define a chi-square value, x?*, which is related
to the common slope F value in an analogous manner to that obtaining between
chi square and F for a single set of data. Given k sets of data which have been
analyzed for a common slope or common difference between averages, the rela-
tion may be expressed as

F o= x* (16)

ZT—k—l)

2T —k— x*
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x =F<z T{:ZI;:I:+F) an

This alternative chi-square value will, of course, differ from the one proposed
above.

or as
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