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SUMMARY 

A class of statistics based on the integrated weighted difference in Kaplan-Meier estimators is 
introduced for the two-sample censored data problem. With positive weight functions these statistics 
are intuitive for and sensitive against the alternative of stochastic ordering. The standard weighted 
log-rank statistics are not always sensitive against this alternative, particularly if the hazard functions 
cross. 

Qualitative comparisons are made between the weighted log-rank statistics and these weighted 
Kaplan-Meier (WKM) statistics. A statement of null asymptotic distribution theory is given and the 
choice of weight function is discussed in some detail. Results from small-sample simulation studies 
indicate that these statistics compare favorably with the log-rank procedure even under the propor- 
tional hazards alternative, and may perform better than it under the crossing hazards alternative. 

1. Introduction 

Consider the classical two-sample censored data survival analysis problem, with survival 
continuous and censoring independent of survival in each group. The question to be 
addressed is whether survival in group 1 is better than survival in group 2. If the survival 
functions cross, then a summary measure of survival on which to base the comparison is 
needed. The mean survival time and average hazard rate are natural choices. If survival in 
the two groups is stochastically ordered, however, 

SI(t) : S2(t) for all t, SI(.) $ S2(.), (1.1) 

then clearly population 1 has the better survival. The comparison in this case does not need 
to rely on an arbitrary summary measure. Indeed, any test procedure used to compare two 
groups, regardless of which summary measure on which it is based, should at least be 
sensitive to the alternative of stochastic ordering. 

The commonly used test statistics for censored data are the log-rank (Cox, 1972) and 
Wilcoxon (Peto and Peto, 1972) statistics. It can be shown that these statistics essentially 
estimate integrated weighted differences in hazard functions Vn J K(u)[X2(u) - XI (u)] du 
with K(.) positive (Gill, 1980). Thus, these tests are sensitive to alternatives of ordered 
hazard functions, though not necessarily to the more general alternative (1.1). Work by 
Breslow, Edler, and Berger (1984) and more recently by Fleming, Harrington, and 

Key words: Kaplan-Meier estimators; Random censorship; Stochastic ordering; Two-sample 
problem. 
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O'Sullivan (1987) has focused on versatile test procedures that are sensitive to both the 
ordered hazards and crossing hazards alternatives. These procedures, like the log-rank and 
Wilcoxon tests, are essentially based on estimates of the hazard functions. Here, we present 
a class of statistics which are based directly on the estimated survival functions and which 
have been motivated by the alternative of stochastic ordering. 

2. Motivation 

2.1 Weighted Kaplan-Meier (WKM) Statistics 

The form of the stochastic ordering alternative suggests a natural (albeit naive) measure of 
the difference in survival between the two groups, namely fu = f? [Si (t) - S2(t)] dt, where 
to is the length of the study period. We can interpret Alto as the average difference in the 
survival probabilities over the study period. We can also interpret Au as the difference in 
mean survival times when distributions are truncated at to, although it is not this interpre- 
tation that motivates Au as a measure for comparison under the general stochastic ordering 
alternative. If Si(.), i = 1, 2, are the Kaplan-Meier estimators of the survival functions 
(Kaplan and Meier, 1958), then a natural statistic on which to base a test procedure 
might be 

oto 

A J [SI (t) - S2(t)] dt. 

In censored data it is well known that the Kaplan-Meier estimator S,(t) can be 
very unstable for t close to to in the presence of heavy censoring. Indeed, the limiting 
variance of vn[S3i(t) - Si(t)] is given by 

vi(t) = S2(t) f ( Xi(u) du, 

where C7-(u) is the probability of not being censored before time u (Gill, 1980). In many 
applications censoring is determined largely by the timing of subject entry into the study, 
with the probability of early entry being quite small. That is, Cy-(t) is small for t close to 
to. In addition, it will most often be the case that there are positive probabilities of failing 
near to and of surviving the length of the study, i.e., Xi(t) > 0 for t near to and Si(to) > 0 so 
that vi(t) can be large for t close to to. Consequently, A is unstable in many applications of 
practical interest, and hence unsuitable as a test statistic. 

To remedy such instability we introduce a random weight function w(.) estimating a 
deterministic function w(.), which downweights the contributions of the SI (t) - S2(t) in 
4 over later time periods if censoring is heavy. We will show that if the weight function is 
chosen appropriately the resulting statistic will be stable. 

Formally, we define a weighted Kaplan-Meier or WKM statistic as 

WKM = Xi A; J (t)[S3(t) - S2(t)] dt, n 

where T, = supIt: C,(t) A C2(t) > 0}, A denotes minimum, ni is the sample size in group 
i, n = n, + n2, and CA(.) is the Kaplan-Meier estimator of the censoring survival function 
in group i. Stability conditions, given in the next section, will require wi(t) = 0 if CM(t) = 0, 
i = 1 or 2, so that we can in fact replace T, with to (or oo). We include this endpoint T, in 
the definition, however, for the sake of comparison with the endpoint used by the weighted 
log-rank statistics. 
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2.2 Comparison with Weighted Log-Rank Statistics 

We can write a weighted log-rank statistic (or LK statistic) as 

LK== - YX-, KFt) [dN2(t) _ dNi(t)1 
LK n KjOk YJ(t) Y(tJO 

where Ni(t) is the process that counts the observed deaths in group i through time t, Yi(t) 
is the number of subjects still at risk at t, K(t) is a weight function, and T = T. A T2, where 
Ti is the last observation (censored or not) in group i. Note that T is the natural endpoint 
here since LK is based on the difference in hazard functions, which can be estimated only 
while subjects are at risk in both groups, i.e., on [0, T]. If T is a censored observation then 
T7 and T are the same, but if T is an uncensored observation, then T < T7 and the WKM 
statistic uses information from more of the time axis than does the weighted log-rank. 

We have motivated the class of WKM statistics from the point of view of stochastic 
ordering alternatives. WKM statistics are based directly on estimates of the survival 
functions, in contrast to LK statistics, which are based on estimates of the hazard functions. 
Another essential difference is that, unlike LK statistics, WKM statistics are not generalized 
rank statistics. Since an Lk statistic is based on ranks, its power against a specific alternative 
might not be sensitive to the magnitude of the difference in survival time. To illustrate this 
point we consider the two (admittedly extreme but illustrative) configurations depicted in 
Figure 1. Configuration (b) differs from (a) only in that survival in group 1 has been shifted 
to the right by the addition of a lag time. Although the magnitude of the difference in 
survival is larger in (b) than it is in (a), because the ranks of the observations in the 
combined samples are unchanged from realization (a) to realization (b), a rank statistic 
yields exactly the same P-value for both realizations. In contrast, the non-rank-based 
WKM statistics should be much more sensitive to configuration (b) than to (a). Indeed, 
a WKM statistic is essentially the difference of two generalized L-statistics 

WKM = -f [S3(t) - S3(t)] d[ vi (u) dul 

- f,' [fJc iw(u) dul d[S2(t) - S3(t)], 

1 1 11 -1 

A A A A 

S2 S1 S2 S1 

0 
_L X_ 

_ _ _ 
0 

_ _ _ _ _ _ _ _ _ 

Time Time 

Configuration (a) Configuration (b) 

Figure 1. An example where rank statistics yield the same P-value for both a large and a small 
difference in survival time. 
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and hence the power of the test procedure is inherently dependent on the magnitude of the 
difference in survival time on some scale. 

2.3 Other Related Procedures 

Some nonparametric statistics based directly on the survivor functions have been proposed 
for this problem. Notably, generalizations of the Kolmogorov-Smirnov statistic to censored 
data have been studied by Fleming et al. (1980) and by Schumacher (1984). This statistic 
is based on the maximum distance between the two survivor functions and, though it may 
be very sensitive to a difference that is large but evident only over a short period of time, 
it can be very insensitive to a moderate difference that extends over a long period of time. 
In practice, the latter rather than the former will be of more clinical interest. Note also that 
because the Kolmogorov-Smirnov statistic is rank-based, it shares some of the shortcomings 
of LK statistics. 

A statistic closer to the WKM in philosophy is the Cramer-von Mises statistic, which in 
uncensored data can be written as 

CvM = K(t)[S (t) - S2(t)]2 dF(t), 

where F(.) is the pooled empirical distribution function and K(.) is a weight function. This 
is a weighted average of the squared distances between the estimated survival functions and 
is oriented toward the two-sided alternative S1 (.) $ S2(.). A generalization to censored 
data was studied by Schumacher (1984). The Cramer-von Mises statistic differs from the 
WKM statistic in that again it is a rank statistic, the integration with respect to F(.) 
allowing mass only at observed death times. Interestingly, the original statistic proposed by 
Cramer was f [Si (t) - S2(t)]2 dt, a two-sided version of an (unweighted) WKM statistic. 
Von Mises introduced the integration with respect to F to yield a distribution-free rank 
statistic, allowing for exact nonparametric testing in small samples. The WKM statistics 
proposed here retain the flavor of Cramer's original statistic. Although they are not 
distribution-free, we will choose the weight function so that the statistics are nonparametric 
in the sense that asymptotically valid tests can be performed without assumptions regarding 
the underlying survival and censoring distributions. 

3. An Asymptotically Valid Test Procedure 

Suppose the null hypothesis Ho: SI(.) = S2(*) = S(.) holds. Also assume that lim,-- ni/n 
= pi > 0, i.e., both groups are a nonnegligible fraction of the total sample, and that the 
observation times are bounded. Asymptotically the relevant time interval for comparison 
is [0, r] where X- = suptt: S(t) A Cl(t) A C2(t) , 01. We will consider only random weight 
functions w( (.) that are good estimators of some w(.) in the sense that 

sup I w(t) - w(t)) A 0. (3.1) 
(0,T) 

Natural weight functions which we have considered involve Kaplan-Meier estimators of 
the underlying survival and censoring distribution functions. Hence, consistency of the 
Kaplan-Meier estimator (Shorack and Wellner, 1986) will often be useful in verifying (3. 1). 

The real constraint on the weight function, to ensure stability of the WKM statistic, is 
that for some positive constants F and 6, 

I w(t) I [C1 (t)]( ')+ and I '(t) I [ t (3.2) 

for all t < T and i = 1, 2. Thus, we require that the weight function be small toward the 
end of the observation period if censoring is heavy, that is, if -II[S' (t) - S2(t)] has a large 
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variance. In unpublished work, O'Sullivan and Fleming (Technical Report No. 163, Center 
for Stochastic Processes, University of North Carolina, 1986) show that if (3.2) is satisfied, 
then 

WKM- ~~~nl2() dt d WKM = X _ 0 w(t)[Si(t) - -* N(0, 2)2 (3.3) 

where 

2 = [ fT W(U)S(U) du ]Pc ) +i P2C)(t)) dS(t). 
S2(t) ]2 -1 tc- 

The variance expression (r2is not intuitive, though in the simple uncensored data case with 
w(.) = 1, it can be verified that o-2 is the variance of the distribution function 1 - S(-) 
(O'Sullivan, unpublished Ph.D. thesis, University of Washington, 1986). We would expect 
this since we can rewrite WKM in this case as V/nI n2/n(X1 - X2), where Xi is the sample 
mean. Two natural estimators of o-2, an unpooled ,P and a pooled 4P, are 

2 ,~~ ('t fW i()Si (u) du]' 
P~~~~n EC P- X I (),(U )d ] A i=I ni- 

1 J 
i S1t)Cj(tS-(t) 

d~t 

and 

^12 Sf' [fITC i(U)S(U) du]2 p C-(t) + p2C2-(t) 
OP JO S(t)S-(t) Cj(t)C-(t) dS(t), 

where S(.) is the Kaplan-Meier estimator calculated from the pooled sample and i = ni/n. 
These are consistent under the null hypothesis (O'Sullivan, unpublished Ph.D. thesis, 1986). 
The unpooled estimator is also consistent under a fixed alternative, estimating the two 
components of the variance separately. In the classical uncensored case with w'() = 1, 
rllp = (n2/n)SI + (n/n)S 2, where Si is the sample variance from the ith sample, so that 

U2,p is the usual unpooled variance estimator. On the other hand, UP is the sample variance 
from the two samples combined, and is not the usual pooled variance estimator used with 
the difference in sample means. 

4. The Choice of Weight Function 

The stability constraint (3.2) requires that wi be a function of Cy and C-. For example, 

)= ^ C-(t )Cj(t) 

P1 Cy(t) + 2Cy(t)' 

which is akin to a geometric average of the two censoring survivor function estimators, and 
[wi( )](/2)+6 b > 0, satisfy (3.2). Since these weight functions reduce to unity in uncensored 
data, the resulting WKM test statistics can be regarded as generalizations of the z-test 
statistic to censored data. It is desirable that the weight function render the statistic 
interpretable as well as stable so that the power of the test procedure depends on some 
population parameter of interest. If the difference in mean survival time is a parameter of 
interest, for example, then wi(*) is a natural choice. In uncensored data this WKM estimates 
the mean difference in survival during the study period, and under stochastic ordering in 
censored data a lower bound is estimated. 

In a medical context the weight function w(-) might involve some notion of quality of 
life. For example, in the comparison of the effects on survival of two aggressive treatments 
administered over a short time interval [0, t0], only the long-term quality lifetime gained 
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0 

O X21X2 -5 
O\2 

.> X2 =.05 

0 - I J .. 

0 t0=1 5 
Figure 2. An example where group 1 has better long-term survival probabilities but higher long- 

term hazard rates than group 2. 

during (t > to) for one treatment over the other may be relevant. For the choice w(t) = 0, 
t S to, and w(t) = 1, t > to, Nfn/(n In2) WKM is an estimate of the mean difference in 
quality lifetime over the study period. In censored data one might use wvC(t)Ilt > to), which 
provides a lower bound on this difference under stochastic ordering. This very simple 
situation cannot be accommodated by statistics based on the hazard function. For example, 
in Figure 2, group 1 is seen to have more quality survival time, yet the hazard in group 1 
is larger than the hazard in group 2 during the relevant time period t > to. 

In marketing settings the notion of cost will enter naturally into the weight function. For 
example, in a wood-processing plant consider the comparison of two chemical treatments 
to enhance the strength of wood planks. A gradually increasing load applied to a plank 
yields a "load at breakage" (survival time) random variable. If V(u) is the probability that 
a plank will be used at a load less than u in practice, then the expected proportion of 
breakages in practice is 

1 - S(u)] d V(u) = v(u)[ 1 - S(u)] du. 

In terms of real cost the natural statistic on which to base a comparison is 
00 

v'(u)[Su) - S2(u)] du. 

In censored data the weight function wvC(u)L3(u) might be used. 
In these two examples, the quantities to be estimated are essentially differences of two 

weighted (survival time) averages, or location estimates. These are well estimated in 
uncensored data. Stable estimation in censored data, however, requires downweighting of 
information over periods of heavy censoring. Hence, censored data are intrinsically unsuit- 
able for estimation of these "real-time" parameters. However, realizing the limitations of 
the data, we can develop test procedures which, by virtue of the particular choice of weight 
function, are sensitive to the alternative of most interest. These types of techniques have 
not been considered in survival analysis before. 
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5. Small-Sample Simulation Results 

In the simulation studies we considered the weight functions and and 4 because they will 
often be natural choices in practice. A subscript c or NIc denotes the corresponding WKM 
statistic. A superscript p (pooled) or Up (unpooled) indicates the variance estimator used. 
The simulations were performed on an IBM-AT personal computer, using the APL 
programming language and its inherent random number generator. All tests were one- 
sided. 

5.1 Size Properties 

The survival distributions chosen were Weibull, Sb,a(t) = e-(1/b), t > 0, with b = 1 and a = 

.5, 1, 2, and 3. This group of survival functions is diverse in terms of skewness and tail- 
weight, factors that might be expected to affect the empirical sizes of the tests under study. 
The censoring distributions were equal and uniform U(O, c). The expected proportion 
censored under the various survival and censoring configurations and the simulation results 
under the null hypothesis are displayed in Table 1. 

In almost all cases studied WKM,. and WKM ,. provide equally acceptable empirical 
significance levels, with the test based on WKM .- being slightly more anticonservative 
than WKMC in general. From a practical point of view, however, we can conclude that 
WKM - is equally as acceptable to use in small samples as WKMc. Indeed, the simulation 
results suggest that the asymptotic result (3.3) may also be valid for WKMrc despite the 
fact that (3.2) does not hold. 

Table 1 also indicates the superior performance of the pooled variance estimator over 
the unpooled estimator, tests based on 4rllp being unacceptably anticonservative, especially 
at lower P-values. Further simulations (presented in O'Sullivan, unpublished Ph.D. thesis, 
University of North Carolina, 1986) indicate that the situation worsens considerably for 
(p in unequally censored data and yet a, performs very well. Reasons for this have yet to 
be explored. We recommend use of UP in practice and the remaining results presented here 
pertain only to procedures using this variance estimator. 

The empirical levels of WKM P and WKM P are both very close to the nominal level 
across a broad range of situations. Only with uncensored heavy-tailed data do the sizes 
deviate substantially from the nominal level and then only at the lower .01 level rather 
than at the .05 level. Since in uncensored data we are essentially dealing with the z-test and 
intuitively an outlier will influence the sample variance considerably more than it will 
affect the sample mean, it is not surprising that the tests are conservative in this case. 
Benjamini (1983) has shown that the conservatism occurs primarily at low P-values. To 
protect against such conservatism, classical statistical methodology would suggest "trimming 
the data," using trimmed sample means for comparison rather than true sample means. 
That is to say, artificial censoring of the data to increase robustness of the test procedure is 
suggested! The natural censoring seen in survival data should yield WKM P statistics robust 
in size in real applications. 

5.2 Power 

The results of some simulations under the various stochastic ordering configurations of 
Figure 3 are given in Table 2. Configurations I(a), (b), (c), and (d) are Weibull proportional 
hazards alternatives, with a = .5, 1, 2, and 3, respectively. The scale parameter b for S. is 
1 in all cases. In censored data WKMr- is slightly more powerful than WKMC, primarily 
because the largest difference in the survival functions occurs toward the end of the 
censoring distribution and WKM/r puts relatively more weight there than does WKMc. 
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I Weibull Proportionol Hazard Alternatives 

t l(t)= 2 ( b)t lt= X tv--2 X c 
2~~~~~~X2O 

Si S 

S2 S~~~~~~~~~~~~~~2 
0 0 4 

(C2 (d2) 
Xi( t k2t XC( t k t 

Y2.25 Y2.37 

S2 2S 

o , , L__ 

0 4 0 4 

in Ealy H1azard Difference i Late Hazard Ditffer fence 
1 Xi=.25 

Xv. 

X2- 

o 0 o 4 0 4 

fr Crossig Hdazards Alternatoives 

(aa) Xitie 5 (bc XIi.1 

TXh X=os lber 
X1=1.5 

o 4 0 4 

Figure 3. Stochastic ordering alternatives considered in the power simulations. Configurations in I 
are Weibull with constant hazard ratio y. Configurations in ce, III, and IV are piecewise exponential. 

The difference, however, is very small. The log-rank is known to be the locally most 
powerful test statistic against proportional hazards alternatives when the censoring distri- 
butions are equal (Gill, 1980) and indeed its efficiency in this situation is a major reason 
for its popularity. Table 2 indicates that across a broad range of proportional hazards 
alternatives the WKMh and WKMfo statistics attain high efficiency. Only in the uncensored 
heavy-tailed configuration (a) does the log-rank gain substantially over the WKM statistics. 
This most likely can be explained by the conservatism of this test in small samples under 
the null hypothesis in uncensored heavy-tailed data. In censored data it appears that WKMC 
and WKohiM compare well with the most efficient log-rank statistic under the proportional 
hazards alternatives considered here. 

If groups 1 and 2 are regarded as treatment and control groups, respectively, then the 
treatment decreases the constant hazard rate uniformly over time in the cases studied 
above. Often a treatment will decrease the hazard for some initial period but its effect on 
the hazard becomes negligible later on, as in configuration II. Since the power of a weighted 
log-rank statistic is governedby ?6 K(t )[X1 (t) -X2(t)]&d, the later time period contributes 
nothing to the power of these statistics, even though differences in survival functions remain 
and presumably add to the power of WKM. Indeed, for the particular configuration chosen, 
the WKM statistics are seen to perform better than the log-rank, though not substantially 
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Table 2 
Power simulation results at significance level a = .05 for configurations of Figure 3, 500 replications 

Uniform (0, 2) censoring No censoring 

Survival WKMc WKM- Log-rank Wilc. WKMc Log-rank Wilc. 
Ia (a) .417 .418 .425 .393 .429 .527 .453 

(b) .523 .529 .548 .491 .675 .691 .588 
(c) .599 .613 .630 .550 .770 .803 .703 
(d) .603 .614 .652 .575 .796 .851 .765 

lIb .804 .772 .722 .788 .404 .400 .722 
Illb .520 .548 .548 .378 .850 .844 .556 
IVb (a) .828 .750 .688 .858 .420 .408 .858 

(b) .898 .868 .776 .866 .432 .242 .576 

an = n2= 20. 
bn, = n2= 50. 

better since later differences in survival are small. The generalized Wilcoxon statistic, which 
relative to the log-rank places more weight at early rather than at late hazard differences, is 
quite well suited to the alternative of configuration II. 

In configuration III the effect of the treatment on the hazard does not manifest itself 
until later in time. The Wilcoxon performs poorly though both the log-rank and WKM 
statistics perform very well. Alternatives where long-term differences in the survival 
functions occur are often of particular interest. The low power of the Wilcoxon in such 
situations is a reason for its recent loss in popularity. 

The hazard functions cross in configuration IV, the treatment decreasing the hazard 
early in time but increasing the hazard late in time. The log-rank performs poorly and the 
WKM can perform much better than it in such situations. The Wilcoxon can also perform 
well in such situations because it places little weight on the late negative differences 
XI (t) - X2(t ). However, an intermediate period of approximately equal hazards, which may 
well occur in practice, can detract from its efficiency as in IV(b). 

We can draw the following general conclusions from the simulation studies. First, the 
power of WKMc and WKM,/c is determined by the magnitude of the difference in the 
observed survival time, scaled by the overall variability. In contrast, the power of a weighted 
log-rank statistic is governed by the difference in the hazard functions. Second, across a 
broad range of stochastic ordering alternatives the WKM statistics are good competitors to 
the log-rank, even under the proportional hazards alternative. They can perform substan- 
tially better than the log-rank when the hazard functions cross. 

6. Discussion 

A basic assumption made for the development of asymptotic distribution theory is that 
S(.) is continuous. Although survival time may in truth have a continuous distribution, in 
practice data are always recorded in discrete units. Hence, ties will often occur in real data. 
O'Sullivan (unpublished Ph.D. thesis, University of North Carolina, 1986) has shown that 
if the recording unit is small and censored observations occur after survival time observa- 
tions at tied data points, then the statistic calculated from its definition (with the ties 
incorporated in the usual definition of the Kaplan-Meier estimators, etc.) is a close 
approximation to that calculation had the true observation times been recorded. Since 
WKM statistics are real-time statistics, this is to be expected. 

In summary, we have introduced a class of nonparametric statistics that seem intuitive 
for the general alternative of stochastic ordering. In contrast to the classical nonparametric 
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statistics for the censored data problem, which are generalized rank statistics, WKM 
statistics are generalizations of location test statistics. In some cases the weight function can 
be chosen so that the test statistic is an estimator of some population parameter of interest. 
With weight function wic the statistic is a generalization of the z-test statistic to censored 
data. This test seems to compare favorably with the popular log-rank test statistic across a 
broad range of stochastic ordering alternatives. 

Further work on the choice of weight functions that are optimal with respect to efficiency 
against particular families of alternatives is being done. Stratified test procedures, K-sample 
test procedures, and procedures based on the joint use of a weighted log-rank and a WKM 
statistic are also being investigated. Finally, some practical applications of WKM statistics 
will further illustrate their real worth, especially relative to the current popular log-rank 
and Wilcoxon procedures. 
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RESUME 

Une classe de statistiques bashes sur la difference integree ponderee dans les estimateurs de Kaplan- 
Meier est presented pour le probleme des donnees censurees sur deux 6chantillons. Avec des fonctions 
de poids positives ces statistiques sont intuitives et sensibles contre alternative d'un ordre stochas- 
tique. Les statistiques du lograng standard pondered ne sont pas toujours sensibles contre cette 
alternative particuli&rement si les fonctions de risque croissent. 

Des comparaisons qualitatives sont faites entre les statistiques du lograng pondered et ces statistiques 
de Kaplan-Meier ponderees. Une distribution theorique asymptotique nulle est specifiee et le choix 
d'une fonction de ponderation est discute en detail. Des resultats d'etudes de simulation sur de petits 
echantillons indiquent que ces statistiques se comportent favorablement par rapport a la procedure 
du lograng meme sous l'alternative de risques proportionnels et peuvent etre superieures sous une 
alternative de risques croissants. 
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